File size: 20,995 Bytes
f88156f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "cd8b22b7",
   "metadata": {},
   "outputs": [],
   "source": [
    "import sys\n",
    "import os\n",
    "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
    "\n",
    "# Path Configuration\n",
    "from tools.preprocess import *\n",
    "\n",
    "# Processing context\n",
    "trait = \"Celiac_Disease\"\n",
    "cohort = \"GSE87629\"\n",
    "\n",
    "# Input paths\n",
    "in_trait_dir = \"../../input/GEO/Celiac_Disease\"\n",
    "in_cohort_dir = \"../../input/GEO/Celiac_Disease/GSE87629\"\n",
    "\n",
    "# Output paths\n",
    "out_data_file = \"../../output/preprocess/Celiac_Disease/GSE87629.csv\"\n",
    "out_gene_data_file = \"../../output/preprocess/Celiac_Disease/gene_data/GSE87629.csv\"\n",
    "out_clinical_data_file = \"../../output/preprocess/Celiac_Disease/clinical_data/GSE87629.csv\"\n",
    "json_path = \"../../output/preprocess/Celiac_Disease/cohort_info.json\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "923a604f",
   "metadata": {},
   "source": [
    "### Step 1: Initial Data Loading"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "4c028ed6",
   "metadata": {},
   "outputs": [],
   "source": [
    "from tools.preprocess import *\n",
    "# 1. Identify the paths to the SOFT file and the matrix file\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. Read the matrix file to obtain background information and sample characteristics data\n",
    "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
    "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
    "background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
    "\n",
    "# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
    "sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
    "\n",
    "# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
    "print(\"Background Information:\")\n",
    "print(background_info)\n",
    "print(\"Sample Characteristics Dictionary:\")\n",
    "print(sample_characteristics_dict)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "5e59e5e5",
   "metadata": {},
   "source": [
    "### Step 2: Dataset Analysis and Clinical Feature Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "162d98ea",
   "metadata": {},
   "outputs": [],
   "source": [
    "import pandas as pd\n",
    "import os\n",
    "import json\n",
    "from typing import Dict, Any, Callable, Optional\n",
    "\n",
    "# 1. Gene Expression Data Availability\n",
    "# Based on the background information, this dataset contains gene expression data from DNA microarray\n",
    "is_gene_available = True\n",
    "\n",
    "# 2. Variable Availability and Data Type Conversion\n",
    "# 2.1 Data Availability\n",
    "# For trait: we can use the biopsy data (villus height to crypt depth) as a measure of celiac disease severity\n",
    "trait_row = 5  # biopsy data, villus height to crypt depth\n",
    "\n",
    "# No age information is available in the sample characteristics\n",
    "age_row = None\n",
    "\n",
    "# No gender information is available in the sample characteristics\n",
    "gender_row = None\n",
    "\n",
    "# 2.2 Data Type Conversion\n",
    "def convert_trait(value):\n",
    "    \"\"\"Convert villus height to crypt depth ratio to a continuous value.\"\"\"\n",
    "    if not value or value == 'NA' or ':' not in value:\n",
    "        return None\n",
    "    \n",
    "    try:\n",
    "        # Extract the numeric value after the colon\n",
    "        parts = value.split(':', 1)\n",
    "        if len(parts) < 2:\n",
    "            return None\n",
    "        \n",
    "        # Convert to float\n",
    "        numeric_value = float(parts[1].strip())\n",
    "        return numeric_value\n",
    "    except (ValueError, TypeError):\n",
    "        return None\n",
    "\n",
    "def convert_age(value):\n",
    "    \"\"\"Placeholder function for age conversion.\"\"\"\n",
    "    return None\n",
    "\n",
    "def convert_gender(value):\n",
    "    \"\"\"Placeholder function for gender conversion.\"\"\"\n",
    "    return None\n",
    "\n",
    "# 3. Save Metadata\n",
    "# Determine if trait data is available\n",
    "is_trait_available = trait_row is not None\n",
    "\n",
    "# Validate and save cohort info\n",
    "validate_and_save_cohort_info(\n",
    "    is_final=False,\n",
    "    cohort=cohort,\n",
    "    info_path=json_path,\n",
    "    is_gene_available=is_gene_available,\n",
    "    is_trait_available=is_trait_available\n",
    ")\n",
    "\n",
    "# 4. Clinical Feature Extraction\n",
    "if trait_row is not None:\n",
    "    # Sample characteristics dictionary from the previous step\n",
    "    sample_char_dict = {\n",
    "        0: ['individual: celiac patient A', 'individual: celiac patient C', 'individual: celiac patient G', 'individual: celiac patient H', 'individual: celiac patient K', 'individual: celiac patient L', 'individual: celiac patient M', 'individual: celiac patient N', 'individual: celiac patient O', 'individual: celiac patient P', 'individual: celiac patient Q', 'individual: celiac patient R', 'individual: celiac patient S', 'individual: celiac patient T', 'individual: celiac patient U', 'individual: celiac patient V', 'individual: celiac patient W', 'individual: celiac patient X', 'individual: celiac patient Y', 'individual: celiac patient Z'],\n",
    "        1: ['disease state: biopsy confirmed celiac disease on gluten-free diet greater than one year'],\n",
    "        2: ['treatment: control', 'treatment: 6 weeks gluten challenge'],\n",
    "        3: ['tissue: peripheral whole blood'],\n",
    "        4: ['cell type: purified pool of B and T cells'],\n",
    "        5: ['biopsy data, villus height to crypt depth: 2.9', 'biopsy data, villus height to crypt depth: 2.6', 'biopsy data, villus height to crypt depth: 1.1', 'biopsy data, villus height to crypt depth: 0.5', 'biopsy data, villus height to crypt depth: 0.3', 'biopsy data, villus height to crypt depth: 2', 'biopsy data, villus height to crypt depth: 0.4', 'biopsy data, villus height to crypt depth: 2.4', 'biopsy data, villus height to crypt depth: 1.4', 'biopsy data, villus height to crypt depth: 2.7', 'biopsy data, villus height to crypt depth: 3.5', 'biopsy data, villus height to crypt depth: 0.7', 'biopsy data, villus height to crypt depth: 0.2', 'biopsy data, villus height to crypt depth: 2.8', 'biopsy data, villus height to crypt depth: 3', 'biopsy data, villus height to crypt depth: 0.8', 'biopsy data, villus height to crypt depth: 1.2', 'biopsy data, villus height to crypt depth: 1.7', 'biopsy data, villus height to crypt depth: 2.5', 'biopsy data, villus height to crypt depth: 2.1', 'biopsy data, villus height to crypt depth: 3.1'],\n",
    "        6: ['hybridization batch: 1']\n",
    "    }\n",
    "    \n",
    "    # Convert to a proper format for the geo_select_clinical_features function\n",
    "    # We need to create a DataFrame where each row is a feature type and columns are samples\n",
    "    # First, get the maximum number of samples for any feature\n",
    "    max_samples = max(len(values) for values in sample_char_dict.values())\n",
    "    \n",
    "    # Create a DataFrame with features as rows and pad with NaN for missing values\n",
    "    data = {}\n",
    "    for row_id, values in sample_char_dict.items():\n",
    "        data[row_id] = values + [None] * (max_samples - len(values))\n",
    "    \n",
    "    clinical_data = pd.DataFrame(data).T  # Transpose to have features as rows\n",
    "    \n",
    "    # Extract clinical features\n",
    "    clinical_features = geo_select_clinical_features(\n",
    "        clinical_df=clinical_data,\n",
    "        trait=trait,\n",
    "        trait_row=trait_row,\n",
    "        convert_trait=convert_trait,\n",
    "        age_row=age_row,\n",
    "        convert_age=convert_age,\n",
    "        gender_row=gender_row,\n",
    "        convert_gender=convert_gender\n",
    "    )\n",
    "    \n",
    "    # Preview the clinical features\n",
    "    preview = preview_df(clinical_features)\n",
    "    print(f\"Clinical features preview: {preview}\")\n",
    "    \n",
    "    # Create directory if it doesn't exist\n",
    "    os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "    \n",
    "    # Save clinical features to CSV\n",
    "    clinical_features.to_csv(out_clinical_data_file, index=False)\n",
    "    print(f\"Clinical features saved to: {out_clinical_data_file}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "d1e058a0",
   "metadata": {},
   "source": [
    "### Step 3: Gene Data Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "766799fc",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. Get the SOFT and matrix file paths again \n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "print(f\"Matrix file found: {matrix_file}\")\n",
    "\n",
    "# 2. Use the get_genetic_data function from the library to get the gene_data\n",
    "try:\n",
    "    gene_data = get_genetic_data(matrix_file)\n",
    "    print(f\"Gene data shape: {gene_data.shape}\")\n",
    "    \n",
    "    # 3. Print the first 20 row IDs (gene or probe identifiers)\n",
    "    print(\"First 20 gene/probe identifiers:\")\n",
    "    print(gene_data.index[:20])\n",
    "except Exception as e:\n",
    "    print(f\"Error extracting gene data: {e}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "29fef58d",
   "metadata": {},
   "source": [
    "### Step 4: Gene Identifier Review"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "06a52f5a",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Looking at the identifiers, I can recognize these as Illumina probe IDs (ILMN_xxxxxxx format)\n",
    "# These are not standard human gene symbols and will need to be mapped to gene symbols\n",
    "\n",
    "requires_gene_mapping = True\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "8796b3c5",
   "metadata": {},
   "source": [
    "### Step 5: Gene Annotation"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "b024383c",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.\n",
    "gene_annotation = get_gene_annotation(soft_file)\n",
    "\n",
    "# 2. Use the 'preview_df' function from the library to preview the data and print out the results.\n",
    "print(\"Gene annotation preview:\")\n",
    "print(preview_df(gene_annotation))\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "173d1067",
   "metadata": {},
   "source": [
    "### Step 6: Gene Identifier Mapping"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "677e16e3",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. Determine the columns for mapping\n",
    "# Looking at the gene annotation preview, 'ID' seems to contain the probe identifiers (ILMN_xxxxxxx)\n",
    "# and 'Symbol' contains the gene symbols\n",
    "prob_col = 'ID'\n",
    "gene_col = 'Symbol'\n",
    "\n",
    "print(f\"Using columns for mapping: {prob_col} -> {gene_col}\")\n",
    "\n",
    "# 2. Get a gene mapping dataframe\n",
    "mapping_df = get_gene_mapping(gene_annotation, prob_col, gene_col)\n",
    "print(f\"Mapping dataframe shape: {mapping_df.shape}\")\n",
    "print(\"First few rows of mapping dataframe:\")\n",
    "print(mapping_df.head())\n",
    "\n",
    "# 3. Apply gene mapping to convert probe-level measurements to gene expression data\n",
    "gene_data = apply_gene_mapping(gene_data, mapping_df)\n",
    "print(f\"Gene expression data shape after mapping: {gene_data.shape}\")\n",
    "print(\"First few gene symbols after mapping:\")\n",
    "print(gene_data.index[:10])\n",
    "\n",
    "# Preview the first few rows of gene expression data\n",
    "print(\"Preview of gene expression data:\")\n",
    "preview_gene_data = preview_df(gene_data)\n",
    "print(preview_gene_data)\n",
    "\n",
    "# Create directory if it doesn't exist\n",
    "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
    "\n",
    "# Save gene expression data to CSV\n",
    "gene_data.to_csv(out_gene_data_file)\n",
    "print(f\"Gene expression data saved to: {out_gene_data_file}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "44383014",
   "metadata": {},
   "source": [
    "### Step 7: Data Normalization and Linking"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "a9b702cb",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. Normalize the obtained gene data with the 'normalize_gene_symbols_in_index' function from the library.\n",
    "normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n",
    "normalized_gene_data.to_csv(out_gene_data_file)\n",
    "print(f\"Normalized gene data shape: {normalized_gene_data.shape}\")\n",
    "print(f\"Normalized gene data saved to {out_gene_data_file}\")\n",
    "\n",
    "# Load clinical data from the saved file\n",
    "clinical_df = pd.read_csv(out_clinical_data_file)\n",
    "print(f\"Clinical data shape: {clinical_df.shape}\")\n",
    "\n",
    "# Rename the first column to be our trait\n",
    "clinical_df = pd.DataFrame({trait: clinical_df.iloc[:, 0]})\n",
    "print(f\"Reformatted clinical data shape: {clinical_df.shape}\")\n",
    "print(f\"Clinical data columns: {clinical_df.columns}\")\n",
    "\n",
    "# 2. Link the clinical and genetic data\n",
    "linked_data = geo_link_clinical_genetic_data(clinical_df, normalized_gene_data)\n",
    "print(f\"Linked data shape before handling missing values: {linked_data.shape}\")\n",
    "\n",
    "# 3. Handle missing values in the linked data\n",
    "linked_data = handle_missing_values(linked_data, trait)\n",
    "print(f\"Linked data shape after handling missing values: {linked_data.shape}\")\n",
    "\n",
    "# 4. Determine whether the trait and demographic features are severely biased\n",
    "is_trait_biased, unbiased_linked_data = judge_and_remove_biased_features(linked_data, trait)\n",
    "\n",
    "# 5. Conduct quality check and save the cohort information\n",
    "note = \"Dataset contains gene expression from B and T cells in celiac disease patients during a gluten challenge. The biopsy data (villus height to crypt depth ratio) is used as a continuous measure of celiac disease severity.\"\n",
    "\n",
    "is_usable = validate_and_save_cohort_info(\n",
    "    is_final=True, \n",
    "    cohort=cohort, \n",
    "    info_path=json_path, \n",
    "    is_gene_available=True, \n",
    "    is_trait_available=True, \n",
    "    is_biased=is_trait_biased, \n",
    "    df=unbiased_linked_data,\n",
    "    note=note\n",
    ")\n",
    "\n",
    "# 6. If the linked data is usable, save it as a CSV file\n",
    "if is_usable:\n",
    "    print(f\"Data is usable. Saving to {out_data_file}\")\n",
    "    # Create directory if it doesn't exist\n",
    "    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
    "    unbiased_linked_data.to_csv(out_data_file)\n",
    "else:\n",
    "    print(\"Data is not usable. Not saving linked data file.\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "4949198a",
   "metadata": {},
   "source": [
    "### Step 8: Data Normalization and Linking"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "4b7e2724",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. Normalize the obtained gene data with the 'normalize_gene_symbols_in_index' function from the library.\n",
    "normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n",
    "normalized_gene_data.to_csv(out_gene_data_file)\n",
    "print(f\"Normalized gene data shape: {normalized_gene_data.shape}\")\n",
    "print(f\"Normalized gene data saved to {out_gene_data_file}\")\n",
    "\n",
    "# Debug: examine the structure of clinical_data\n",
    "print(\"Clinical data structure:\")\n",
    "print(f\"Shape: {clinical_data.shape}\")\n",
    "print(\"First row of clinical data:\")\n",
    "print(clinical_data.iloc[0])\n",
    "\n",
    "# Extract clinical features properly\n",
    "# The first row contains sample accession IDs\n",
    "sample_ids = clinical_data.iloc[0].values\n",
    "print(f\"Number of sample IDs: {len(sample_ids)}\")\n",
    "print(\"First few sample IDs:\", sample_ids[:5])\n",
    "\n",
    "# Extract clinical features\n",
    "selected_clinical_df = geo_select_clinical_features(\n",
    "    clinical_df=clinical_data,\n",
    "    trait=trait,\n",
    "    trait_row=trait_row,\n",
    "    convert_trait=convert_trait,\n",
    "    age_row=None,\n",
    "    convert_age=None,\n",
    "    gender_row=None,\n",
    "    convert_gender=None\n",
    ")\n",
    "\n",
    "print(\"Selected clinical data:\")\n",
    "print(f\"Shape: {selected_clinical_df.shape}\")\n",
    "print(\"First few elements:\")\n",
    "print(selected_clinical_df.iloc[:, :5])\n",
    "\n",
    "# 2. Link the clinical and genetic data using the correct function\n",
    "linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)\n",
    "print(f\"Linked data shape: {linked_data.shape}\")\n",
    "print(\"Linked data columns:\", linked_data.columns[:10])  # Show first 10 columns\n",
    "\n",
    "# Check if we have any samples with trait data\n",
    "if linked_data.shape[0] > 0 and trait in linked_data.columns:\n",
    "    # 3. Handle missing values in the linked data\n",
    "    linked_data_clean = handle_missing_values(linked_data, trait)\n",
    "    print(f\"Linked data shape after handling missing values: {linked_data_clean.shape}\")\n",
    "    \n",
    "    if linked_data_clean.shape[0] > 0:\n",
    "        # 4. Determine whether the trait and demographic features are severely biased\n",
    "        is_trait_biased, unbiased_linked_data = judge_and_remove_biased_features(linked_data_clean, trait)\n",
    "        \n",
    "        # 5. Conduct quality check and save cohort information\n",
    "        note = \"Dataset contains gene expression from B and T cells in celiac disease patients during a gluten challenge. The biopsy data (villus height to crypt depth ratio) is used as a continuous measure of celiac disease severity.\"\n",
    "        \n",
    "        is_usable = validate_and_save_cohort_info(\n",
    "            is_final=True,\n",
    "            cohort=cohort,\n",
    "            info_path=json_path,\n",
    "            is_gene_available=True,\n",
    "            is_trait_available=True,\n",
    "            is_biased=is_trait_biased,\n",
    "            df=unbiased_linked_data,\n",
    "            note=note\n",
    "        )\n",
    "        \n",
    "        # 6. If the linked data is usable, save it as a CSV file\n",
    "        if is_usable:\n",
    "            print(f\"Data is usable. Saving to {out_data_file}\")\n",
    "            # Create directory if it doesn't exist\n",
    "            os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
    "            unbiased_linked_data.to_csv(out_data_file)\n",
    "        else:\n",
    "            print(\"Data is not usable. Not saving linked data file.\")\n",
    "    else:\n",
    "        print(\"No samples remaining after cleaning missing values.\")\n",
    "        is_usable = validate_and_save_cohort_info(\n",
    "            is_final=True,\n",
    "            cohort=cohort,\n",
    "            info_path=json_path,\n",
    "            is_gene_available=True,\n",
    "            is_trait_available=True,\n",
    "            is_biased=True,\n",
    "            df=pd.DataFrame(),\n",
    "            note=\"No valid samples remained after cleaning. Cannot proceed with analysis.\"\n",
    "        )\n",
    "else:\n",
    "    print(\"No trait column in linked data. Cannot proceed with analysis.\")\n",
    "    is_usable = validate_and_save_cohort_info(\n",
    "        is_final=True,\n",
    "        cohort=cohort,\n",
    "        info_path=json_path,\n",
    "        is_gene_available=True,\n",
    "        is_trait_available=False,\n",
    "        is_biased=True,\n",
    "        df=pd.DataFrame(),\n",
    "        note=\"Failed to properly link clinical and genetic data. No trait column present in linked data.\"\n",
    "    )\n",
    "    print(\"Data is not usable. Not saving linked data file.\")"
   ]
  }
 ],
 "metadata": {},
 "nbformat": 4,
 "nbformat_minor": 5
}