File size: 5,297 Bytes
f88156f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "4e210e5d",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T08:17:45.192780Z",
     "iopub.status.busy": "2025-03-25T08:17:45.192678Z",
     "iopub.status.idle": "2025-03-25T08:17:45.355666Z",
     "shell.execute_reply": "2025-03-25T08:17:45.355278Z"
    }
   },
   "outputs": [],
   "source": [
    "import sys\n",
    "import os\n",
    "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
    "\n",
    "# Path Configuration\n",
    "from tools.preprocess import *\n",
    "\n",
    "# Processing context\n",
    "trait = \"Chronic_Fatigue_Syndrome\"\n",
    "\n",
    "# Input paths\n",
    "tcga_root_dir = \"../../input/TCGA\"\n",
    "\n",
    "# Output paths\n",
    "out_data_file = \"../../output/preprocess/Chronic_Fatigue_Syndrome/TCGA.csv\"\n",
    "out_gene_data_file = \"../../output/preprocess/Chronic_Fatigue_Syndrome/gene_data/TCGA.csv\"\n",
    "out_clinical_data_file = \"../../output/preprocess/Chronic_Fatigue_Syndrome/clinical_data/TCGA.csv\"\n",
    "json_path = \"../../output/preprocess/Chronic_Fatigue_Syndrome/cohort_info.json\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "6e7e812d",
   "metadata": {},
   "source": [
    "### Step 1: Initial Data Loading"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "fa0b8d64",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T08:17:45.356928Z",
     "iopub.status.busy": "2025-03-25T08:17:45.356785Z",
     "iopub.status.idle": "2025-03-25T08:17:45.362170Z",
     "shell.execute_reply": "2025-03-25T08:17:45.361838Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "No suitable directory found for Chronic_Fatigue_Syndrome.\n",
      "Skipping this trait as no suitable data was found.\n"
     ]
    }
   ],
   "source": [
    "import os\n",
    "import pandas as pd\n",
    "\n",
    "# 1. Find the most relevant directory for Osteoporosis\n",
    "subdirectories = os.listdir(tcga_root_dir)\n",
    "target_trait = trait.lower().replace(\"_\", \" \")  # Convert to lowercase for case-insensitive matching\n",
    "\n",
    "# Search for related terms to Osteoporosis\n",
    "related_terms = [\"osteoporosis\", \"bone\", \"density\", \"skeletal\", \"bone mineral\", \"fracture\"]\n",
    "matched_dir = None\n",
    "\n",
    "for subdir in subdirectories:\n",
    "    subdir_lower = subdir.lower()\n",
    "    # Check if any related term is in the directory name\n",
    "    if any(term in subdir_lower for term in related_terms):\n",
    "        matched_dir = subdir\n",
    "        print(f\"Found potential match: {subdir}\")\n",
    "        # If exact match found, select it\n",
    "        if \"osteoporosis\" in subdir_lower:\n",
    "            print(f\"Selected as best match: {subdir}\")\n",
    "            matched_dir = subdir\n",
    "            break\n",
    "\n",
    "# If we found a potential match, use it\n",
    "if matched_dir:\n",
    "    print(f\"Selected directory: {matched_dir}\")\n",
    "    \n",
    "    # 2. Get the clinical and genetic data file paths\n",
    "    cohort_dir = os.path.join(tcga_root_dir, matched_dir)\n",
    "    clinical_file_path, genetic_file_path = tcga_get_relevant_filepaths(cohort_dir)\n",
    "    \n",
    "    print(f\"Clinical file: {os.path.basename(clinical_file_path)}\")\n",
    "    print(f\"Genetic file: {os.path.basename(genetic_file_path)}\")\n",
    "    \n",
    "    # 3. Load the data files\n",
    "    clinical_df = pd.read_csv(clinical_file_path, sep='\\t', index_col=0)\n",
    "    genetic_df = pd.read_csv(genetic_file_path, sep='\\t', index_col=0)\n",
    "    \n",
    "    # 4. Print clinical data columns for inspection\n",
    "    print(\"\\nClinical data columns:\")\n",
    "    print(clinical_df.columns.tolist())\n",
    "    \n",
    "    # Print basic information about the datasets\n",
    "    print(f\"\\nClinical data shape: {clinical_df.shape}\")\n",
    "    print(f\"Genetic data shape: {genetic_df.shape}\")\n",
    "    \n",
    "    # Check if we have both gene and trait data\n",
    "    is_gene_available = genetic_df.shape[0] > 0\n",
    "    is_trait_available = clinical_df.shape[0] > 0\n",
    "    \n",
    "else:\n",
    "    print(f\"No suitable directory found for {trait}.\")\n",
    "    is_gene_available = False\n",
    "    is_trait_available = False\n",
    "\n",
    "# Record the data availability\n",
    "validate_and_save_cohort_info(\n",
    "    is_final=False,\n",
    "    cohort=\"TCGA\",\n",
    "    info_path=json_path,\n",
    "    is_gene_available=is_gene_available,\n",
    "    is_trait_available=is_trait_available\n",
    ")\n",
    "\n",
    "# Exit if no suitable directory was found\n",
    "if not matched_dir:\n",
    "    print(\"Skipping this trait as no suitable data was found.\")"
   ]
  }
 ],
 "metadata": {
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.16"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}