File size: 18,618 Bytes
f88156f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "c4b53075",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T08:18:00.534321Z",
"iopub.status.busy": "2025-03-25T08:18:00.534145Z",
"iopub.status.idle": "2025-03-25T08:18:00.700155Z",
"shell.execute_reply": "2025-03-25T08:18:00.699798Z"
}
},
"outputs": [],
"source": [
"import sys\n",
"import os\n",
"sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
"\n",
"# Path Configuration\n",
"from tools.preprocess import *\n",
"\n",
"# Processing context\n",
"trait = \"Chronic_kidney_disease\"\n",
"cohort = \"GSE127136\"\n",
"\n",
"# Input paths\n",
"in_trait_dir = \"../../input/GEO/Chronic_kidney_disease\"\n",
"in_cohort_dir = \"../../input/GEO/Chronic_kidney_disease/GSE127136\"\n",
"\n",
"# Output paths\n",
"out_data_file = \"../../output/preprocess/Chronic_kidney_disease/GSE127136.csv\"\n",
"out_gene_data_file = \"../../output/preprocess/Chronic_kidney_disease/gene_data/GSE127136.csv\"\n",
"out_clinical_data_file = \"../../output/preprocess/Chronic_kidney_disease/clinical_data/GSE127136.csv\"\n",
"json_path = \"../../output/preprocess/Chronic_kidney_disease/cohort_info.json\"\n"
]
},
{
"cell_type": "markdown",
"id": "28dee1d6",
"metadata": {},
"source": [
"### Step 1: Initial Data Loading"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "db0d0956",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T08:18:00.701603Z",
"iopub.status.busy": "2025-03-25T08:18:00.701462Z",
"iopub.status.idle": "2025-03-25T08:18:00.830205Z",
"shell.execute_reply": "2025-03-25T08:18:00.829816Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Background Information:\n",
"!Series_title\t\"Single-cell RNA-seq profiling reveals novel insights in immune-complex deposition and epithelium transition in IgA nephropathy\"\n",
"!Series_summary\t\"IgA nephropathy represents the most prevalent chronic nephrosis worldwide. However, pathogenesis about IgA deposition and end-stage renal failure is still not well defined. Using single-cell RNA-seq, we identified the mesangial membrane receptor for IgA, which collaborates with increased extracellular matrix proteins and protease inhibitor to facilitate IgA deposition. Meanwhile, cell-cell interaction analysis revealed increased communications between mesangium and other cell types, uncovering how morbidity inside glomerulus spreads to whole kidney, which results in the genetic changes of kidney resident immune cells. Prominent interaction decreasing in intercalated cells leads to the discovery of a transitional cell type, which exhibited significant EMT and fibrosis features. Our work comprehensively characterized the pathological mesangial signatures, highlighting the step-by-step pathogenic process of IgA nephropathy from mesangium to epithelium.\"\n",
"!Series_overall_design\t\"In this study, we collected single cells from 13 IgAN patients’ renal biopsies and normal renal cells from 6 kidney cancer patients’ paracancerous tissues. As glomerulus are difficult to digest, we separately dissociated the glomerulus and the rest renal tissues. We applied CD326+ and CD14+ MACS to capture epithelium and macrophages, to cover the entire renal cell types, negative selected cells from MACS were also collected. Meanwhile, we isolated monocytes from 5 of the 13 IgAN patients and another 5 normal persons’ peripheral blood using CD14+ MACS\"\n",
"!Series_overall_design\t\"\"\n",
"!Series_overall_design\t\"**Submitter declares that the raw data have been deposited in the Genome Sequence Archive for Human (https://bigd.big.ac.cn/gsa-human/) under submission number PRJCA003506.**\"\n",
"Sample Characteristics Dictionary:\n",
"{0: ['patients: IgAN_01', 'patients: IgAN_06', 'patients: IgAN_07', 'patients: IgAN_09', 'patients: IgAN_10', 'patients: IgAN_11', 'patients: IgAN_12', 'patients: IgAN_15', 'patients: IgAN_16', 'patients: IgAN_17', 'patients: IgAN_18', 'patients: IgAN_19', 'patients: IgAN_20', 'patients: NM_01', 'patients: NM_02', 'patients: NM_03', 'patients: NM_07', 'patients: NM_08', 'patients: NM_09', 'patients: PBM_IgAN_10', 'patients: PBM_IgAN_12', 'patients: PBM_IgAN_17', 'patients: PBM_IgAN_19', 'patients: PBM_IgAN_20', 'patients: PBM_NM_01', 'patients: PBM_NM_02', 'patients: PBM_NM_03', 'patients: PBM_NM_04', 'patients: PBM_NM_05'], 1: ['disease state: IgAN', 'disease state: kidney cancer', 'disease state: normal'], 2: ['tissue: renal biopsies', 'tissue: paracancerous tissues', 'cell type: monocytes']}\n"
]
}
],
"source": [
"from tools.preprocess import *\n",
"# 1. Identify the paths to the SOFT file and the matrix file\n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"\n",
"# 2. Read the matrix file to obtain background information and sample characteristics data\n",
"background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
"clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
"background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
"\n",
"# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
"sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
"\n",
"# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
"print(\"Background Information:\")\n",
"print(background_info)\n",
"print(\"Sample Characteristics Dictionary:\")\n",
"print(sample_characteristics_dict)\n"
]
},
{
"cell_type": "markdown",
"id": "30b7a907",
"metadata": {},
"source": [
"### Step 2: Dataset Analysis and Clinical Feature Extraction"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "995d55db",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T08:18:00.831590Z",
"iopub.status.busy": "2025-03-25T08:18:00.831464Z",
"iopub.status.idle": "2025-03-25T08:18:00.974269Z",
"shell.execute_reply": "2025-03-25T08:18:00.973889Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Preview of selected clinical features:\n",
"{'GSM3625775': [1.0], 'GSM3625776': [1.0], 'GSM3625777': [1.0], 'GSM3625778': [1.0], 'GSM3625779': [1.0], 'GSM3625780': [1.0], 'GSM3625781': [1.0], 'GSM3625782': [1.0], 'GSM3625783': [1.0], 'GSM3625784': [1.0], 'GSM3625785': [1.0], 'GSM3625786': [1.0], 'GSM3625787': [1.0], 'GSM3625788': [1.0], 'GSM3625789': [1.0], 'GSM3625790': [1.0], 'GSM3625791': [1.0], 'GSM3625792': [1.0], 'GSM3625793': [1.0], 'GSM3625794': [1.0], 'GSM3625795': [1.0], 'GSM3625796': [1.0], 'GSM3625797': [1.0], 'GSM3625798': [1.0], 'GSM3625799': [1.0], 'GSM3625800': [1.0], 'GSM3625801': [1.0], 'GSM3625802': [1.0], 'GSM3625803': [1.0], 'GSM3625804': [1.0], 'GSM3625805': [1.0], 'GSM3625806': [1.0], 'GSM3625807': [1.0], 'GSM3625808': [1.0], 'GSM3625809': [1.0], 'GSM3625810': [1.0], 'GSM3625811': [1.0], 'GSM3625812': [1.0], 'GSM3625813': [1.0], 'GSM3625814': [1.0], 'GSM3625815': [1.0], 'GSM3625816': [1.0], 'GSM3625817': [1.0], 'GSM3625818': [1.0], 'GSM3625819': [1.0], 'GSM3625820': [1.0], 'GSM3625821': [1.0], 'GSM3625822': [1.0], 'GSM3625823': [1.0], 'GSM3625824': [1.0], 'GSM3625825': [1.0], 'GSM3625826': [1.0], 'GSM3625827': [1.0], 'GSM3625828': [1.0], 'GSM3625829': [1.0], 'GSM3625830': [1.0], 'GSM3625831': [1.0], 'GSM3625832': [1.0], 'GSM3625833': [1.0], 'GSM3625834': [1.0], 'GSM3625835': [1.0], 'GSM3625836': [1.0], 'GSM3625837': [1.0], 'GSM3625838': [1.0], 'GSM3625839': [1.0], 'GSM3625840': [1.0], 'GSM3625841': [1.0], 'GSM3625842': [1.0], 'GSM3625843': [1.0], 'GSM3625844': [1.0], 'GSM3625845': [1.0], 'GSM3625846': [1.0], 'GSM3625847': [1.0], 'GSM3625848': [1.0], 'GSM3625849': [1.0], 'GSM3625850': [1.0], 'GSM3625851': [1.0], 'GSM3625852': [1.0], 'GSM3625853': [1.0], 'GSM3625854': [1.0], 'GSM3625855': [1.0], 'GSM3625856': [1.0], 'GSM3625857': [1.0], 'GSM3625858': [1.0], 'GSM3625859': [1.0], 'GSM3625860': [1.0], 'GSM3625861': [1.0], 'GSM3625862': [1.0], 'GSM3625863': [1.0], 'GSM3625864': [1.0], 'GSM3625865': [1.0], 'GSM3625866': [1.0], 'GSM3625867': [1.0], 'GSM3625868': [1.0], 'GSM3625869': [1.0], 'GSM3625870': [1.0], 'GSM3625871': [1.0], 'GSM3625872': [1.0], 'GSM3625873': [1.0], 'GSM3625874': [1.0], 'GSM3625875': [1.0], 'GSM3625876': [1.0], 'GSM3625877': [1.0], 'GSM3625878': [1.0], 'GSM3625879': [1.0], 'GSM3625880': [1.0], 'GSM3625881': [1.0], 'GSM3625882': [1.0], 'GSM3625883': [1.0], 'GSM3625884': [1.0], 'GSM3625885': [1.0], 'GSM3625886': [1.0], 'GSM3625887': [1.0], 'GSM3625888': [1.0], 'GSM3625889': [1.0], 'GSM3625890': [1.0], 'GSM3625891': [1.0], 'GSM3625892': [1.0], 'GSM3625893': [1.0], 'GSM3625894': [1.0], 'GSM3625895': [1.0], 'GSM3625896': [1.0], 'GSM3625897': [1.0], 'GSM3625898': [1.0], 'GSM3625899': [1.0], 'GSM3625900': [1.0], 'GSM3625901': [1.0], 'GSM3625902': [1.0], 'GSM3625903': [1.0], 'GSM3625904': [1.0], 'GSM3625905': [1.0], 'GSM3625906': [1.0], 'GSM3625907': [1.0], 'GSM3625908': [1.0], 'GSM3625909': [1.0], 'GSM3625910': [1.0], 'GSM3625911': [1.0], 'GSM3625912': [1.0], 'GSM3625913': [1.0], 'GSM3625914': [1.0], 'GSM3625915': [1.0], 'GSM3625916': [1.0], 'GSM3625917': [1.0], 'GSM3625918': [1.0], 'GSM3625919': [1.0], 'GSM3625920': [1.0], 'GSM3625921': [1.0], 'GSM3625922': [1.0], 'GSM3625923': [1.0], 'GSM3625924': [1.0], 'GSM3625925': [1.0], 'GSM3625926': [1.0], 'GSM3625927': [1.0], 'GSM3625928': [1.0], 'GSM3625929': [1.0], 'GSM3625930': [1.0], 'GSM3625931': [1.0], 'GSM3625932': [1.0], 'GSM3625933': [1.0], 'GSM3625934': [1.0], 'GSM3625935': [1.0], 'GSM3625936': [1.0], 'GSM3625937': [1.0], 'GSM3625938': [1.0], 'GSM3625939': [1.0], 'GSM3625940': [1.0], 'GSM3625941': [1.0], 'GSM3625942': [1.0], 'GSM3625943': [1.0], 'GSM3625944': [1.0], 'GSM3625945': [1.0], 'GSM3625946': [1.0], 'GSM3625947': [1.0], 'GSM3625948': [1.0], 'GSM3625949': [1.0], 'GSM3625950': [1.0], 'GSM3625951': [1.0], 'GSM3625952': [1.0], 'GSM3625953': [1.0], 'GSM3625954': [1.0], 'GSM3625955': [1.0], 'GSM3625956': [1.0], 'GSM3625957': [1.0], 'GSM3625958': [1.0], 'GSM3625959': [1.0], 'GSM3625960': [1.0], 'GSM3625961': [1.0], 'GSM3625962': [1.0], 'GSM3625963': [1.0], 'GSM3625964': [1.0], 'GSM3625965': [1.0], 'GSM3625966': [1.0], 'GSM3625967': [1.0], 'GSM3625968': [1.0], 'GSM3625969': [1.0], 'GSM3625970': [1.0], 'GSM3625971': [1.0], 'GSM3625972': [1.0], 'GSM3625973': [1.0], 'GSM3625974': [1.0]}\n",
"Unique trait values in the dataset: [1. 0.]\n",
"Clinical data saved to ../../output/preprocess/Chronic_kidney_disease/clinical_data/GSE127136.csv\n"
]
}
],
"source": [
"import pandas as pd\n",
"import os\n",
"import json\n",
"from typing import Optional, Callable, Dict, Any\n",
"\n",
"# 1. Determine Gene Expression Data Availability\n",
"# Based on the background information, this dataset contains single-cell RNA-seq profiling data\n",
"is_gene_available = True\n",
"\n",
"# 2. Variable Availability and Data Type Conversion\n",
"# 2.1 Data Availability\n",
"\n",
"# Trait: IgA nephropathy status can be inferred from row 1 'disease state'\n",
"trait_row = 1 \n",
"\n",
"# Age: There is no information about age in the sample characteristics\n",
"age_row = None\n",
"\n",
"# Gender: There is no information about gender in the sample characteristics\n",
"gender_row = None\n",
"\n",
"# 2.2 Data Type Conversion\n",
"def convert_trait(value: str) -> Optional[int]:\n",
" \"\"\"Convert trait value to binary (0 for control, 1 for IgA nephropathy)\"\"\"\n",
" if value is None:\n",
" return None\n",
" \n",
" # The values in the sample characteristics dictionary are already in the format\n",
" # \"disease state: IgAN\", so we need to extract the actual value\n",
" if \":\" in value:\n",
" value = value.split(\":\", 1)[1].strip().lower()\n",
" else:\n",
" value = value.lower()\n",
" \n",
" # Based on the data, \"igan\" indicates having the disease\n",
" if value == \"igan\":\n",
" return 1\n",
" # \"normal\" or \"kidney cancer\" indicates not having IgA nephropathy\n",
" elif value in [\"normal\", \"kidney cancer\"]:\n",
" return 0\n",
" else:\n",
" return None\n",
"\n",
"def convert_age(value: str) -> Optional[float]:\n",
" \"\"\"Convert age value to float (not used in this dataset)\"\"\"\n",
" return None\n",
"\n",
"def convert_gender(value: str) -> Optional[int]:\n",
" \"\"\"Convert gender value to binary (not used in this dataset)\"\"\"\n",
" return None\n",
"\n",
"# 3. Save Metadata\n",
"# Check if trait data is available\n",
"is_trait_available = trait_row is not None\n",
"validate_and_save_cohort_info(\n",
" is_final=False,\n",
" cohort=cohort,\n",
" info_path=json_path,\n",
" is_gene_available=is_gene_available,\n",
" is_trait_available=is_trait_available\n",
")\n",
"\n",
"# 4. Clinical Feature Extraction\n",
"if trait_row is not None:\n",
" # Extract clinical features\n",
" selected_clinical_df = geo_select_clinical_features(\n",
" clinical_df=clinical_data,\n",
" trait=trait,\n",
" trait_row=trait_row,\n",
" convert_trait=convert_trait,\n",
" age_row=age_row,\n",
" convert_age=convert_age,\n",
" gender_row=gender_row,\n",
" convert_gender=convert_gender\n",
" )\n",
" \n",
" # Preview the resulting dataframe\n",
" preview = preview_df(selected_clinical_df)\n",
" print(\"Preview of selected clinical features:\")\n",
" print(preview)\n",
" \n",
" # Check if we have both control and case values\n",
" unique_values = selected_clinical_df.iloc[0].unique()\n",
" print(f\"Unique trait values in the dataset: {unique_values}\")\n",
" \n",
" # Ensure output directory exists\n",
" os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
" \n",
" # Save to CSV\n",
" selected_clinical_df.to_csv(out_clinical_data_file, index=False)\n",
" print(f\"Clinical data saved to {out_clinical_data_file}\")\n"
]
},
{
"cell_type": "markdown",
"id": "96a552ad",
"metadata": {},
"source": [
"### Step 3: Gene Data Extraction"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "9fde275b",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T08:18:00.975645Z",
"iopub.status.busy": "2025-03-25T08:18:00.975529Z",
"iopub.status.idle": "2025-03-25T08:18:01.540352Z",
"shell.execute_reply": "2025-03-25T08:18:01.539970Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"SOFT file: ../../input/GEO/Chronic_kidney_disease/GSE127136/GSE127136_family.soft.gz\n",
"Matrix file: ../../input/GEO/Chronic_kidney_disease/GSE127136/GSE127136_series_matrix.txt.gz\n",
"Found the matrix table marker in the file.\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Warning: Extracted gene data has 0 rows.\n",
"Gene expression data could not be successfully extracted from this dataset.\n"
]
}
],
"source": [
"# 1. Identify the paths to the SOFT file and the matrix file\n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"print(f\"SOFT file: {soft_file}\")\n",
"print(f\"Matrix file: {matrix_file}\")\n",
"\n",
"# Set gene availability flag\n",
"is_gene_available = True # Initially assume gene data is available\n",
"\n",
"# First check if the matrix file contains the expected marker\n",
"found_marker = False\n",
"try:\n",
" with gzip.open(matrix_file, 'rt') as file:\n",
" for line in file:\n",
" if \"!series_matrix_table_begin\" in line:\n",
" found_marker = True\n",
" break\n",
" \n",
" if found_marker:\n",
" print(\"Found the matrix table marker in the file.\")\n",
" else:\n",
" print(\"Warning: Could not find '!series_matrix_table_begin' marker in the file.\")\n",
" \n",
" # Try to extract gene data from the matrix file\n",
" gene_data = get_genetic_data(matrix_file)\n",
" \n",
" if gene_data.shape[0] == 0:\n",
" print(\"Warning: Extracted gene data has 0 rows.\")\n",
" is_gene_available = False\n",
" else:\n",
" print(f\"Gene data shape: {gene_data.shape}\")\n",
" # Print the first 20 gene/probe identifiers\n",
" print(\"First 20 gene/probe identifiers:\")\n",
" print(gene_data.index[:20].tolist())\n",
" \n",
"except Exception as e:\n",
" print(f\"Error extracting gene data: {e}\")\n",
" is_gene_available = False\n",
" \n",
" # Try to diagnose the file format\n",
" print(\"Examining file content to diagnose the issue:\")\n",
" try:\n",
" with gzip.open(matrix_file, 'rt') as file:\n",
" for i, line in enumerate(file):\n",
" if i < 10: # Print first 10 lines to diagnose\n",
" print(f\"Line {i}: {line.strip()[:100]}...\") # Print first 100 chars of each line\n",
" else:\n",
" break\n",
" except Exception as e2:\n",
" print(f\"Error examining file: {e2}\")\n",
"\n",
"if not is_gene_available:\n",
" print(\"Gene expression data could not be successfully extracted from this dataset.\")"
]
}
],
"metadata": {
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.16"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|