File size: 19,621 Bytes
f88156f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "e8c1a62a",
   "metadata": {},
   "outputs": [],
   "source": [
    "import sys\n",
    "import os\n",
    "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
    "\n",
    "# Path Configuration\n",
    "from tools.preprocess import *\n",
    "\n",
    "# Processing context\n",
    "trait = \"Chronic_kidney_disease\"\n",
    "cohort = \"GSE180394\"\n",
    "\n",
    "# Input paths\n",
    "in_trait_dir = \"../../input/GEO/Chronic_kidney_disease\"\n",
    "in_cohort_dir = \"../../input/GEO/Chronic_kidney_disease/GSE180394\"\n",
    "\n",
    "# Output paths\n",
    "out_data_file = \"../../output/preprocess/Chronic_kidney_disease/GSE180394.csv\"\n",
    "out_gene_data_file = \"../../output/preprocess/Chronic_kidney_disease/gene_data/GSE180394.csv\"\n",
    "out_clinical_data_file = \"../../output/preprocess/Chronic_kidney_disease/clinical_data/GSE180394.csv\"\n",
    "json_path = \"../../output/preprocess/Chronic_kidney_disease/cohort_info.json\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "6874114c",
   "metadata": {},
   "source": [
    "### Step 1: Initial Data Loading"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "b9717358",
   "metadata": {},
   "outputs": [],
   "source": [
    "from tools.preprocess import *\n",
    "# 1. Identify the paths to the SOFT file and the matrix file\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. Read the matrix file to obtain background information and sample characteristics data\n",
    "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
    "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
    "background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
    "\n",
    "# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
    "sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
    "\n",
    "# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
    "print(\"Background Information:\")\n",
    "print(background_info)\n",
    "print(\"Sample Characteristics Dictionary:\")\n",
    "print(sample_characteristics_dict)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "42edf409",
   "metadata": {},
   "source": [
    "### Step 2: Dataset Analysis and Clinical Feature Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "e6415012",
   "metadata": {},
   "outputs": [],
   "source": [
    "import pandas as pd\n",
    "import numpy as np\n",
    "import os\n",
    "import re\n",
    "from typing import Dict, List, Optional, Callable, Any, Tuple\n",
    "\n",
    "# 1. Gene Expression Data Availability\n",
    "# From the background information, this is gene expression data from Affymetrix microarray\n",
    "# \"Profiling was performed on Affymetrix ST2.1 microarray platform\"\n",
    "is_gene_available = True\n",
    "\n",
    "# 2.1 Data Availability\n",
    "# For trait:\n",
    "# The sample group includes different kidney diseases and living donors\n",
    "trait_row = 0  # This corresponds to 'sample group' in the sample characteristics\n",
    "\n",
    "# For age:\n",
    "# No age information is available in the characteristics\n",
    "age_row = None\n",
    "\n",
    "# For gender:\n",
    "# No gender information is available in the characteristics\n",
    "gender_row = None\n",
    "\n",
    "# 2.2 Data Type Conversion Functions\n",
    "def convert_trait(value_str):\n",
    "    if not isinstance(value_str, str):\n",
    "        return None\n",
    "    \n",
    "    # Extract the value after colon\n",
    "    if \":\" in value_str:\n",
    "        value = value_str.split(\":\", 1)[1].strip()\n",
    "    else:\n",
    "        value = value_str.strip()\n",
    "    \n",
    "    # Binary classification: Living donor (0) vs CKD (1)\n",
    "    if \"Living donor\" in value:\n",
    "        return 0  # Control\n",
    "    elif any(term in value for term in [\"DN\", \"FSGS\", \"GN\", \"IgAN\", \"Nephritis\", \"Hypertensive Nephrosclerosis\", \n",
    "                                        \"Light-Chain Deposit Disease\", \"LN-WHO\", \"MCD\", \"MN\", \"CKD\", \n",
    "                                        \"Interstitial fibrosis\", \"Thin-BMD\"]):\n",
    "        return 1  # CKD patient\n",
    "    elif \"Tumor Nephrectomy\" in value:\n",
    "        # These are unaffected parts from tumor nephrectomy, likely normal kidney tissue\n",
    "        return 0\n",
    "    \n",
    "    return None  # Unknown or undefined\n",
    "\n",
    "# The following functions are defined as placeholders since the data is not available\n",
    "def convert_age(value_str):\n",
    "    return None\n",
    "\n",
    "def convert_gender(value_str):\n",
    "    return None\n",
    "\n",
    "# 3. Save Metadata\n",
    "# Determine trait data availability\n",
    "is_trait_available = trait_row is not None\n",
    "\n",
    "# Initial validation\n",
    "validate_and_save_cohort_info(\n",
    "    is_final=False,\n",
    "    cohort=cohort,\n",
    "    info_path=json_path,\n",
    "    is_gene_available=is_gene_available,\n",
    "    is_trait_available=is_trait_available\n",
    ")\n",
    "\n",
    "# 4. Clinical Feature Extraction\n",
    "# We only process this step if clinical data is available\n",
    "if trait_row is not None:\n",
    "    # Convert the sample characteristics dictionary to a DataFrame\n",
    "    # The dictionary is in the format {row_index: [values_for_samples]}\n",
    "    # We need to create a DataFrame where each row is a feature and each column is a sample\n",
    "    \n",
    "    # Sample characteristics from the previous output\n",
    "    sample_char_dict = {\n",
    "        0: ['sample group: Living donor', \"sample group: 2' FSGS\", 'sample group: chronic Glomerulonephritis (GN) with infiltration by CLL', \n",
    "            'sample group: DN', 'sample group: FGGS', 'sample group: FSGS', 'sample group: Hydronephrosis', 'sample group: IgAN', \n",
    "            'sample group: Interstitial nephritis', 'sample group: Hypertensive Nephrosclerosis', \n",
    "            'sample group: Light-Chain Deposit Disease (IgG lambda)', 'sample group: LN-WHO III', 'sample group: LN-WHO III+V', \n",
    "            'sample group: LN-WHO IV', 'sample group: LN-WHO IV+V', 'sample group: LN-WHO V', 'sample group: LN-WHO-I/II', \n",
    "            'sample group: MCD', 'sample group: MN', 'sample group: CKD with mod-severe Interstitial fibrosis', \n",
    "            'sample group: Thin-BMD', 'sample group: Unaffected parts of Tumor Nephrectomy'],\n",
    "        1: ['tissue: Tubuli from kidney biopsy']\n",
    "    }\n",
    "    \n",
    "    # Create a DataFrame from the dictionary\n",
    "    # Each key in the dictionary becomes a row in the DataFrame\n",
    "    clinical_data = pd.DataFrame.from_dict(sample_char_dict, orient='index')\n",
    "    \n",
    "    # Extract clinical features\n",
    "    selected_clinical_df = geo_select_clinical_features(\n",
    "        clinical_df=clinical_data,\n",
    "        trait=trait,\n",
    "        trait_row=trait_row,\n",
    "        convert_trait=convert_trait,\n",
    "        age_row=age_row,\n",
    "        convert_age=convert_age,\n",
    "        gender_row=gender_row,\n",
    "        convert_gender=convert_gender\n",
    "    )\n",
    "    \n",
    "    # Preview the data\n",
    "    preview = preview_df(selected_clinical_df)\n",
    "    print(\"Preview of selected clinical features:\")\n",
    "    for key, value in preview.items():\n",
    "        print(f\"{key}: {value}\")\n",
    "    \n",
    "    # Ensure output directory exists\n",
    "    os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "    \n",
    "    # Save the clinical data\n",
    "    selected_clinical_df.to_csv(out_clinical_data_file, index=False)\n",
    "    print(f\"Clinical data saved to {out_clinical_data_file}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "58d3a7ce",
   "metadata": {},
   "source": [
    "### Step 3: Gene Data Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "df6d0124",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. Identify the paths to the SOFT file and the matrix file\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "print(f\"SOFT file: {soft_file}\")\n",
    "print(f\"Matrix file: {matrix_file}\")\n",
    "\n",
    "# Set gene availability flag\n",
    "is_gene_available = True  # Assume gene data is available\n",
    "\n",
    "# Extract gene data\n",
    "try:\n",
    "    # Extract gene data from the matrix file\n",
    "    gene_data = get_genetic_data(matrix_file)\n",
    "    print(f\"Gene data shape: {gene_data.shape}\")\n",
    "    \n",
    "    # Print the first 20 gene/probe identifiers\n",
    "    print(\"First 20 gene/probe identifiers:\")\n",
    "    print(gene_data.index[:20].tolist())\n",
    "except Exception as e:\n",
    "    print(f\"Error extracting gene data: {e}\")\n",
    "    print(f\"File path: {matrix_file}\")\n",
    "    print(\"Please check if the file exists and contains the expected markers.\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "65b70031",
   "metadata": {},
   "source": [
    "### Step 4: Gene Identifier Review"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "93ad297a",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Reviewing the gene identifiers\n",
    "# The identifiers follow the pattern \"number_at\" which is characteristic of Affymetrix probe IDs\n",
    "# These are not standard human gene symbols and need to be mapped\n",
    "# For example, '100009613_at' is an Affymetrix probe ID, not a standard gene symbol like \"BRCA1\"\n",
    "\n",
    "requires_gene_mapping = True\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "3c5252c1",
   "metadata": {},
   "source": [
    "### Step 5: Gene Annotation"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "7c2face4",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "gene_annotation = get_gene_annotation(soft_file)\n",
    "\n",
    "# 2. Analyze the gene annotation dataframe to identify which columns contain the gene identifiers and gene symbols\n",
    "print(\"\\nGene annotation preview:\")\n",
    "print(f\"Columns in gene annotation: {gene_annotation.columns.tolist()}\")\n",
    "print(preview_df(gene_annotation, n=5))\n",
    "\n",
    "# Get a more complete view to understand the annotation structure\n",
    "print(\"\\nComplete sample of a few rows:\")\n",
    "print(gene_annotation.iloc[:3].to_string())\n",
    "\n",
    "# Check if there are any columns that might contain gene information beyond what we've seen\n",
    "potential_gene_columns = [col for col in gene_annotation.columns if \n",
    "                          any(term in col.upper() for term in [\"GENE\", \"SYMBOL\", \"NAME\", \"ID\"])]\n",
    "print(f\"\\nPotential gene-related columns: {potential_gene_columns}\")\n",
    "\n",
    "# Look for additional columns that might contain gene symbols\n",
    "# Since we only have 'ID' and 'ENTREZ_GENE_ID', check if we need to use Entrez IDs for mapping\n",
    "gene_id_col = 'ID'\n",
    "gene_symbol_col = None\n",
    "\n",
    "# Check various potential column names for gene symbols\n",
    "for col_name in ['GENE_SYMBOL', 'SYMBOL', 'GENE', 'GENE_NAME', 'GB_ACC']:\n",
    "    if col_name in gene_annotation.columns:\n",
    "        gene_symbol_col = col_name\n",
    "        break\n",
    "\n",
    "# If no dedicated symbol column is found, we'll need to use ENTREZ_GENE_ID\n",
    "if gene_symbol_col is None and 'ENTREZ_GENE_ID' in gene_annotation.columns:\n",
    "    gene_symbol_col = 'ENTREZ_GENE_ID'\n",
    "    print(\"\\nNo direct gene symbol column found. Will use Entrez Gene IDs for mapping.\")\n",
    "\n",
    "if gene_id_col in gene_annotation.columns and gene_symbol_col is not None:\n",
    "    print(f\"\\nSample mappings from '{gene_id_col}' to '{gene_symbol_col}':\")\n",
    "    sample_mappings = gene_annotation[[gene_id_col, gene_symbol_col]].head(10)\n",
    "    print(sample_mappings)\n",
    "    \n",
    "    # Check for non-null mappings to confirm data quality\n",
    "    non_null_mappings = gene_annotation[[gene_id_col, gene_symbol_col]].dropna(subset=[gene_symbol_col])\n",
    "    print(f\"\\nNumber of probes with gene ID mappings: {len(non_null_mappings)}\")\n",
    "    print(f\"Sample of valid mappings:\")\n",
    "    print(non_null_mappings.head(5))\n",
    "else:\n",
    "    print(\"Required mapping columns not found in the annotation data. Will need to explore alternative mapping approaches.\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "9e599958",
   "metadata": {},
   "source": [
    "### Step 6: Gene Identifier Mapping"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "5ef38c81",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. Determine which column in gene annotation corresponds to gene identifiers and which to gene symbols\n",
    "# From previous analysis, the gene annotation has 'ID' for probe IDs and 'ENTREZ_GENE_ID' for Entrez Gene IDs\n",
    "probe_col = 'ID'\n",
    "gene_col = 'ENTREZ_GENE_ID'\n",
    "\n",
    "# 2. Extract the two columns from the gene annotation dataframe to create the mapping dataframe\n",
    "print(\"Creating gene mapping DataFrame...\")\n",
    "mapping_data = get_gene_mapping(gene_annotation, probe_col, gene_col)\n",
    "print(f\"Created mapping between {probe_col} and {gene_col}\")\n",
    "print(f\"Mapping data shape: {mapping_data.shape}\")\n",
    "print(\"Sample of mapping data:\")\n",
    "print(mapping_data.head())\n",
    "\n",
    "# 3. We need to ensure our mapping works by examining the data formats\n",
    "# Let's get a fresh copy of the gene expression data\n",
    "gene_data = get_genetic_data(matrix_file)\n",
    "print(f\"Gene expression data shape: {gene_data.shape}\")\n",
    "\n",
    "# Create a custom mapping approach\n",
    "# First, get the overlap of probe IDs between expression data and annotation\n",
    "common_probes = set(gene_data.index) & set(mapping_data['ID'])\n",
    "print(f\"Number of probes in expression data: {len(gene_data.index)}\")\n",
    "print(f\"Number of probes in mapping data: {len(mapping_data['ID'])}\")\n",
    "print(f\"Number of common probes: {len(common_probes)}\")\n",
    "\n",
    "# Filter mapping to only include probes that exist in expression data\n",
    "valid_mapping = mapping_data[mapping_data['ID'].isin(common_probes)]\n",
    "print(f\"Valid mapping shape after filtering: {valid_mapping.shape}\")\n",
    "\n",
    "# Create a direct mapping from probe ID to Entrez Gene ID\n",
    "probe_to_gene = {}\n",
    "for idx, row in valid_mapping.iterrows():\n",
    "    probe_id = row['ID'] \n",
    "    gene_id = str(row['Gene'])  # Convert to string\n",
    "    \n",
    "    if probe_id not in probe_to_gene:\n",
    "        probe_to_gene[probe_id] = []\n",
    "    probe_to_gene[probe_id].append(gene_id)\n",
    "\n",
    "# Create a new gene expression DataFrame\n",
    "result = pd.DataFrame()\n",
    "\n",
    "# For each probe, distribute its expression to its mapped genes\n",
    "for probe_id, gene_ids in probe_to_gene.items():\n",
    "    if not gene_ids:  # Skip if no genes mapped\n",
    "        continue\n",
    "        \n",
    "    # Get probe expression data\n",
    "    probe_expr = gene_data.loc[probe_id]\n",
    "    \n",
    "    # Distribute expression equally among genes\n",
    "    weight = 1.0 / len(gene_ids)\n",
    "    \n",
    "    for gene_id in gene_ids:\n",
    "        # Skip empty gene IDs\n",
    "        if not gene_id or gene_id == 'nan':\n",
    "            continue\n",
    "            \n",
    "        # Add weighted expression to the gene\n",
    "        if gene_id in result.index:\n",
    "            result.loc[gene_id] += probe_expr * weight\n",
    "        else:\n",
    "            result.loc[gene_id] = probe_expr * weight\n",
    "\n",
    "print(f\"Converted probe-level data to gene-level expression\")\n",
    "print(f\"Gene data shape after mapping: {result.shape}\")\n",
    "\n",
    "if not result.empty:\n",
    "    print(\"First 10 gene symbols after mapping:\")\n",
    "    print(result.index[:10].tolist())\n",
    "    \n",
    "    # Check for top genes with highest expression to verify data quality\n",
    "    print(\"\\nGenes with highest mean expression:\")\n",
    "    mean_expression = result.mean(axis=1).sort_values(ascending=False)\n",
    "    print(mean_expression.head(10))\n",
    "    \n",
    "    # Update gene_data with our processed result\n",
    "    gene_data = result\n",
    "else:\n",
    "    print(\"\\nWarning: No genes were mapped. Check the mapping process.\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "74e09ccc",
   "metadata": {},
   "source": [
    "### Step 7: Gene Identifier Mapping"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "2b52a8fb",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. Determine which column in gene annotation corresponds to gene identifiers and which to gene symbols\n",
    "# From previous analysis, the gene annotation has 'ID' for probe IDs and 'ENTREZ_GENE_ID' for Entrez Gene IDs\n",
    "prob_col = 'ID'\n",
    "gene_col = 'ENTREZ_GENE_ID'\n",
    "\n",
    "# 2. Extract the two columns from the gene annotation dataframe to create the mapping dataframe\n",
    "print(\"Creating gene mapping DataFrame...\")\n",
    "mapping_data = get_gene_mapping(gene_annotation, prob_col, gene_col)\n",
    "print(f\"Created mapping between {prob_col} and {gene_col}\")\n",
    "print(f\"Mapping data shape: {mapping_data.shape}\")\n",
    "print(\"Sample of mapping data:\")\n",
    "print(mapping_data.head())\n",
    "\n",
    "# 3. Convert probe-level measurements to gene expression data by applying the gene mapping\n",
    "print(\"Converting probe-level measurements to gene-level expression data...\")\n",
    "\n",
    "# Use the library function to convert probe-level data to gene-level expression data\n",
    "gene_data = apply_gene_mapping(gene_data, mapping_data)\n",
    "print(f\"Resulting gene expression data shape: {gene_data.shape}\")\n",
    "\n",
    "# Show a sample of the resulting gene data\n",
    "print(\"Sample of gene expression data:\")\n",
    "if not gene_data.empty:\n",
    "    print(\"First 10 gene symbols after mapping:\")\n",
    "    print(gene_data.index[:10].tolist())\n",
    "    \n",
    "    # Check for top genes with highest expression to verify data quality\n",
    "    print(\"\\nGenes with highest mean expression:\")\n",
    "    mean_expression = gene_data.mean(axis=1).sort_values(ascending=False)\n",
    "    print(mean_expression.head(10))\n",
    "else:\n",
    "    print(\"WARNING: No genes were mapped successfully.\")"
   ]
  }
 ],
 "metadata": {},
 "nbformat": 4,
 "nbformat_minor": 5
}