File size: 28,077 Bytes
32677ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "756aada9",
   "metadata": {},
   "outputs": [],
   "source": [
    "import sys\n",
    "import os\n",
    "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
    "\n",
    "# Path Configuration\n",
    "from tools.preprocess import *\n",
    "\n",
    "# Processing context\n",
    "trait = \"Chronic_kidney_disease\"\n",
    "cohort = \"GSE60861\"\n",
    "\n",
    "# Input paths\n",
    "in_trait_dir = \"../../input/GEO/Chronic_kidney_disease\"\n",
    "in_cohort_dir = \"../../input/GEO/Chronic_kidney_disease/GSE60861\"\n",
    "\n",
    "# Output paths\n",
    "out_data_file = \"../../output/preprocess/Chronic_kidney_disease/GSE60861.csv\"\n",
    "out_gene_data_file = \"../../output/preprocess/Chronic_kidney_disease/gene_data/GSE60861.csv\"\n",
    "out_clinical_data_file = \"../../output/preprocess/Chronic_kidney_disease/clinical_data/GSE60861.csv\"\n",
    "json_path = \"../../output/preprocess/Chronic_kidney_disease/cohort_info.json\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "a63a3beb",
   "metadata": {},
   "source": [
    "### Step 1: Initial Data Loading"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "9edd49f1",
   "metadata": {},
   "outputs": [],
   "source": [
    "from tools.preprocess import *\n",
    "# 1. Identify the paths to the SOFT file and the matrix file\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. Read the matrix file to obtain background information and sample characteristics data\n",
    "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
    "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
    "background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
    "\n",
    "# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
    "sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
    "\n",
    "# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
    "print(\"Background Information:\")\n",
    "print(background_info)\n",
    "print(\"Sample Characteristics Dictionary:\")\n",
    "print(sample_characteristics_dict)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "36557a74",
   "metadata": {},
   "source": [
    "### Step 2: Dataset Analysis and Clinical Feature Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "50c3e3f8",
   "metadata": {},
   "outputs": [],
   "source": [
    "I'll correct the code to properly handle the sample characteristics and extract clinical features.\n",
    "\n",
    "```python\n",
    "import pandas as pd\n",
    "import os\n",
    "import numpy as np\n",
    "from typing import Dict, List, Any, Optional, Callable\n",
    "\n",
    "# 1. Gene Expression Data Availability\n",
    "# Based on the background information, this dataset appears to have both miRNA and mRNA data\n",
    "# Since it mentions \"renal miRNA- and mRNA-expression signatures\", we can set is_gene_available to True\n",
    "is_gene_available = True\n",
    "\n",
    "# 2. Variable Availability and Data Type Conversion\n",
    "# 2.1 Data Availability\n",
    "\n",
    "# For trait (CKD progression status)\n",
    "# Looking at the sample characteristics dictionary, we can see that key 4 contains 'clinical course: stable/progressive'\n",
    "trait_row = 4\n",
    "\n",
    "# For age\n",
    "# Looking at the sample characteristics dictionary, keys 1 and 2 contain age data\n",
    "# Key 1 has more consistent age data format, so we'll use it\n",
    "age_row = 1\n",
    "\n",
    "# For gender\n",
    "# Looking at the sample characteristics dictionary, key 0 contains gender data\n",
    "gender_row = 0\n",
    "\n",
    "# 2.2 Data Type Conversion Functions\n",
    "\n",
    "def convert_trait(value):\n",
    "    \"\"\"\n",
    "    Convert trait data to binary format:\n",
    "    - 1 for progressive CKD\n",
    "    - 0 for stable CKD\n",
    "    - None for unknown/missing values\n",
    "    \"\"\"\n",
    "    if pd.isna(value):\n",
    "        return None\n",
    "    \n",
    "    value = value.lower().strip() if isinstance(value, str) else str(value).lower().strip()\n",
    "    \n",
    "    if \":\" in value:\n",
    "        value = value.split(\":\", 1)[1].strip()\n",
    "    \n",
    "    if value == \"progressive\":\n",
    "        return 1\n",
    "    elif value == \"stable\":\n",
    "        return 0\n",
    "    else:\n",
    "        return None\n",
    "\n",
    "def convert_age(value):\n",
    "    \"\"\"\n",
    "    Convert age data to continuous format.\n",
    "    Extract numeric age value after the colon.\n",
    "    \"\"\"\n",
    "    if pd.isna(value):\n",
    "        return None\n",
    "    \n",
    "    value = str(value).strip()\n",
    "    \n",
    "    if \":\" in value:\n",
    "        age_str = value.split(\":\", 1)[1].strip()\n",
    "        try:\n",
    "            return float(age_str)\n",
    "        except ValueError:\n",
    "            return None\n",
    "    else:\n",
    "        try:\n",
    "            return float(value)\n",
    "        except ValueError:\n",
    "            return None\n",
    "\n",
    "def convert_gender(value):\n",
    "    \"\"\"\n",
    "    Convert gender data to binary format:\n",
    "    - 0 for female\n",
    "    - 1 for male\n",
    "    - None for unknown/missing values\n",
    "    \"\"\"\n",
    "    if pd.isna(value):\n",
    "        return None\n",
    "    \n",
    "    value = value.lower().strip() if isinstance(value, str) else str(value).lower().strip()\n",
    "    \n",
    "    if \":\" in value:\n",
    "        value = value.split(\":\", 1)[1].strip()\n",
    "    \n",
    "    if value == \"male\":\n",
    "        return 1\n",
    "    elif value == \"female\":\n",
    "        return 0\n",
    "    else:\n",
    "        return None\n",
    "\n",
    "# 3. Save Metadata\n",
    "# Determine trait data availability\n",
    "is_trait_available = trait_row is not None\n",
    "\n",
    "# Validate and save cohort information\n",
    "validate_and_save_cohort_info(\n",
    "    is_final=False,\n",
    "    cohort=cohort,\n",
    "    info_path=json_path,\n",
    "    is_gene_available=is_gene_available,\n",
    "    is_trait_available=is_trait_available\n",
    ")\n",
    "\n",
    "# 4. Clinical Feature Extraction (if trait_row is not None)\n",
    "if trait_row is not None:\n",
    "    # Create clinical_data DataFrame\n",
    "    # The expected format for geo_select_clinical_features is a DataFrame where\n",
    "    # each row corresponds to a feature category (gender, age, etc.)\n",
    "    sample_chars_dict = {\n",
    "        0: ['gender: male', 'gender: female', 'tissue: kidney biopsy'],\n",
    "        1: ['age (yrs): 72', 'age (yrs): 20', 'age (yrs): 64', 'age (yrs): 17', 'age (yrs): 46', 'age (yrs): 55', 'age (yrs): 74', 'age (yrs): 49', 'age (yrs): 42', 'age (yrs): 73', 'age (yrs): 63', 'age (yrs): 33', 'age (yrs): 24', 'age (yrs): 45', 'age (yrs): 70', 'age (yrs): 60', 'age (yrs): 67', 'age (yrs): 31', 'age (yrs): 53', 'age (yrs): 22', 'age (yrs): 54', 'age (yrs): 40', 'age (yrs): 38', 'age (yrs): 19', 'age (yrs): 28', 'age (yrs): 65', 'age (yrs): 58', 'age (yrs): 56', 'age (yrs): 34', 'age (yrs): 59'],\n",
    "        2: ['diagnosis: Diabetic Nephropathy', 'diagnosis: Focal-Segmental Glomerulosclerosis', 'diagnosis: Hypertensive Nephropathy', 'diagnosis: IgA-Nephropathy', 'diagnosis: Membranous Nephropathy', 'diagnosis: Minimal-Change Disease', 'diagnosis: Other/Unknown', 'age (yrs): 41.6', 'age (yrs): 59.0', 'age (yrs): 21.0', 'age (yrs): 33.0', 'age (yrs): 35.0', 'age (yrs): 24.0', 'age (yrs): 70.0', 'age (yrs): 43.0', 'age (yrs): 45.0', 'age (yrs): 44.0', 'age (yrs): 54.0', 'age (yrs): 74.0', 'age (yrs): 31.0', 'age (yrs): 49.0', 'age (yrs): 28.0', 'age (yrs): 26.0', 'age (yrs): 47.0', 'age (yrs): 20.0', 'age (yrs): 71.0', 'age (yrs): 58.0', 'age (yrs): 18.0', 'age (yrs): 32.0', 'age (yrs): 55.0'],\n",
    "        3: ['clinical course: stable', 'clinical course: progressive', 'diagnosis: IgA nephropathy', 'diagnosis: Glomerulonephritis, not specified', 'diagnosis: Lupus nephritis class 4', 'diagnosis: Lupus nephritis class 5', 'diagnosis: Membranoproliferative glomerulonephritis', 'diagnosis: Focal-segmental glomerulosclerosis', 'diagnosis: Vasculitis', 'diagnosis: Membranous nephropathy', 'diagnosis: Lupus nephritis class 3', 'diagnosis: Minimal change disease', 'diagnosis: Diabetic nephropathy'],\n",
    "        4: [np.nan, 'clinical course: progressive', 'clinical course: stable']\n",
    "    }\n",
    "    \n",
    "    # Create a DataFrame with the correct structure for geo_select_clinical_features\n",
    "    # Each row is a feature category, with the row index corresponding to the feature row numbers\n",
    "    max_row = max(sample_chars_dict.keys()) + 1\n",
    "    clinical_data = pd.DataFrame(index=range(max_row))\n",
    "    \n",
    "    # Add each feature's unique values as columns in the DataFrame\n",
    "    for row_idx, values in sample_chars_dict.items():\n",
    "        for col_idx, value in enumerate(values):\n",
    "            clinical_data.loc[row_idx, col_idx] = value\n",
    "    \n",
    "    # Extract clinical features\n",
    "    selected_clinical_df = geo_select_clinical_features(\n",
    "        clinical_df=clinical_data,\n",
    "        trait=trait,\n",
    "        trait_row=trait_row,\n",
    "        convert_trait=convert_trait,\n",
    "        age_row=age_row,\n",
    "        convert_age=convert_age,\n",
    "        gender_row=gender_row,\n",
    "        convert_gender=convert_gender\n",
    "    )\n",
    "    \n",
    "    # Preview the extracted clinical features\n",
    "    print(\"Preview of extracted clinical features:\")\n",
    "    preview_result = preview_df(selected_clinical_\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "6e8bf64d",
   "metadata": {},
   "source": [
    "### Step 3: Dataset Analysis and Clinical Feature Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "e5c72cd5",
   "metadata": {},
   "outputs": [],
   "source": [
    "import pandas as pd\n",
    "import os\n",
    "import json\n",
    "from typing import Optional, Callable, Dict, Any\n",
    "import gzip\n",
    "\n",
    "# Get background information and clinical data from the dataset\n",
    "background_info, clinical_data = get_background_and_clinical_data(in_cohort_dir)\n",
    "\n",
    "# Get unique values for each row to understand the data structure\n",
    "row_values = get_unique_values_by_row(clinical_data)\n",
    "\n",
    "print(\"Background Information:\")\n",
    "for key, value in background_info.items():\n",
    "    print(f\"{key}: {value}\")\n",
    "\n",
    "print(\"\\nSample Characteristics by Row:\")\n",
    "for row_idx, values in row_values.items():\n",
    "    print(f\"Row {row_idx}: {values}\")\n",
    "\n",
    "# 1. Gene Expression Data Availability\n",
    "# Check if gene expression data is available based on background info\n",
    "is_gene_available = True\n",
    "if \"platform_technology\" in background_info:\n",
    "    tech = background_info[\"platform_technology\"].lower()\n",
    "    if \"mirna\" in tech or \"methylation\" in tech:\n",
    "        is_gene_available = False\n",
    "\n",
    "# 2. Variable Availability and Data Type Conversion\n",
    "# Analyze the rows to identify trait, age, and gender information\n",
    "\n",
    "# For trait (Chronic kidney disease)\n",
    "trait_row = None\n",
    "# Look for rows that might contain disease status information\n",
    "for row_idx, values in row_values.items():\n",
    "    values_str = ' '.join([str(v).lower() for v in values])\n",
    "    if ('ckd' in values_str or \n",
    "        'chronic kidney disease' in values_str or \n",
    "        'kidney' in values_str or \n",
    "        'control' in values_str or \n",
    "        'case' in values_str or \n",
    "        'disease' in values_str or\n",
    "        'patient' in values_str):\n",
    "        trait_row = row_idx\n",
    "        print(f\"Found trait information in row {row_idx}: {values}\")\n",
    "        break\n",
    "\n",
    "def convert_trait(value):\n",
    "    if value is None:\n",
    "        return None\n",
    "    value = str(value).lower()\n",
    "    if ':' in value:\n",
    "        value = value.split(':', 1)[1].strip()\n",
    "    \n",
    "    if ('ckd' in value or \n",
    "        'chronic kidney disease' in value or \n",
    "        'renal disease' in value or \n",
    "        'kidney disease' in value or \n",
    "        'patient' in value or \n",
    "        'case' in value):\n",
    "        return 1\n",
    "    elif ('control' in value or \n",
    "          'healthy' in value or \n",
    "          'normal' in value):\n",
    "        return 0\n",
    "    return None\n",
    "\n",
    "# For age\n",
    "age_row = None\n",
    "# Look for rows that might contain age information\n",
    "for row_idx, values in row_values.items():\n",
    "    values_str = ' '.join([str(v).lower() for v in values])\n",
    "    if 'age' in values_str:\n",
    "        age_row = row_idx\n",
    "        print(f\"Found age information in row {row_idx}: {values}\")\n",
    "        break\n",
    "\n",
    "def convert_age(value):\n",
    "    if value is None:\n",
    "        return None\n",
    "    value = str(value)\n",
    "    if ':' in value:\n",
    "        value = value.split(':', 1)[1].strip()\n",
    "    \n",
    "    # Try to extract numeric age\n",
    "    import re\n",
    "    matches = re.findall(r'\\d+\\.?\\d*', value)\n",
    "    if matches:\n",
    "        try:\n",
    "            return float(matches[0])\n",
    "        except:\n",
    "            return None\n",
    "    return None\n",
    "\n",
    "# For gender\n",
    "gender_row = None\n",
    "# Look for rows that might contain gender information\n",
    "for row_idx, values in row_values.items():\n",
    "    values_str = ' '.join([str(v).lower() for v in values])\n",
    "    if 'gender' in values_str or 'sex' in values_str or 'male' in values_str or 'female' in values_str:\n",
    "        gender_row = row_idx\n",
    "        print(f\"Found gender information in row {row_idx}: {values}\")\n",
    "        break\n",
    "\n",
    "def convert_gender(value):\n",
    "    if value is None:\n",
    "        return None\n",
    "    value = str(value).lower()\n",
    "    if ':' in value:\n",
    "        value = value.split(':', 1)[1].strip()\n",
    "    \n",
    "    if 'female' in value or 'f' == value.strip():\n",
    "        return 0\n",
    "    elif 'male' in value or 'm' == value.strip():\n",
    "        return 1\n",
    "    return None\n",
    "\n",
    "# Check if trait data is available\n",
    "is_trait_available = trait_row is not None\n",
    "\n",
    "# 3. Save Metadata\n",
    "# Validate and save cohort info\n",
    "validate_and_save_cohort_info(\n",
    "    is_final=False,\n",
    "    cohort=cohort,\n",
    "    info_path=json_path,\n",
    "    is_gene_available=is_gene_available,\n",
    "    is_trait_available=is_trait_available\n",
    ")\n",
    "\n",
    "# 4. Clinical Feature Extraction\n",
    "if is_trait_available:\n",
    "    # Extract clinical features\n",
    "    selected_clinical_df = geo_select_clinical_features(\n",
    "        clinical_df=clinical_data,\n",
    "        trait=trait,\n",
    "        trait_row=trait_row,\n",
    "        convert_trait=convert_trait,\n",
    "        age_row=age_row,\n",
    "        convert_age=convert_age,\n",
    "        gender_row=gender_row,\n",
    "        convert_gender=convert_gender\n",
    "    )\n",
    "    \n",
    "    # Preview the dataframe\n",
    "    preview = preview_df(selected_clinical_df)\n",
    "    print(\"\\nPreview of selected clinical features:\")\n",
    "    for key, values in preview.items():\n",
    "        print(f\"{key}: {values}\")\n",
    "    \n",
    "    # Save the clinical data\n",
    "    os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "    selected_clinical_df.to_csv(out_clinical_data_file, index=False)\n",
    "    print(f\"Clinical data saved to {out_clinical_data_file}\")\n",
    "else:\n",
    "    print(\"Cannot process clinical data: trait information not found in the dataset.\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "c36012e4",
   "metadata": {},
   "source": [
    "### Step 4: Gene Data Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "a237c321",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. Identify the paths to the SOFT file and the matrix file\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "print(f\"SOFT file: {soft_file}\")\n",
    "print(f\"Matrix file: {matrix_file}\")\n",
    "\n",
    "# Set gene availability flag\n",
    "is_gene_available = True  # Assume gene data is available\n",
    "\n",
    "# Extract gene data\n",
    "try:\n",
    "    # Extract gene data from the matrix file\n",
    "    gene_data = get_genetic_data(matrix_file)\n",
    "    print(f\"Gene data shape: {gene_data.shape}\")\n",
    "    \n",
    "    # Print the first 20 gene/probe identifiers\n",
    "    print(\"First 20 gene/probe identifiers:\")\n",
    "    print(gene_data.index[:20].tolist())\n",
    "except Exception as e:\n",
    "    print(f\"Error extracting gene data: {e}\")\n",
    "    print(f\"File path: {matrix_file}\")\n",
    "    print(\"Please check if the file exists and contains the expected markers.\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "a5ac7f0f",
   "metadata": {},
   "source": [
    "### Step 5: Gene Identifier Review"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "e52bb4e7",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Examine the gene identifiers shown in the previous output\n",
    "# These identifiers (like 'A_23_P100001') appear to be Agilent microarray probe IDs\n",
    "# They are not standard human gene symbols and will need to be mapped\n",
    "\n",
    "# Agilent probe IDs typically start with 'A_' followed by numbers and letters\n",
    "# This format indicates these are probe identifiers, not gene symbols\n",
    "# We will need to map these to standard gene symbols for analysis\n",
    "\n",
    "requires_gene_mapping = True\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "a3b46831",
   "metadata": {},
   "source": [
    "### Step 6: Gene Annotation"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "dcf609b3",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "gene_annotation = get_gene_annotation(soft_file)\n",
    "\n",
    "# 2. Analyze the gene annotation dataframe to identify which columns contain the gene identifiers and gene symbols\n",
    "print(\"\\nGene annotation preview:\")\n",
    "print(f\"Columns in gene annotation: {gene_annotation.columns.tolist()}\")\n",
    "print(preview_df(gene_annotation, n=5))\n",
    "\n",
    "# Look more closely at columns that might contain gene information\n",
    "print(\"\\nExamining potential gene mapping columns:\")\n",
    "potential_gene_columns = ['gene_assignment', 'mrna_assignment', 'swissprot', 'unigene']\n",
    "for col in potential_gene_columns:\n",
    "    if col in gene_annotation.columns:\n",
    "        print(f\"\\nSample values from '{col}' column:\")\n",
    "        print(gene_annotation[col].head(3).tolist())\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "4bd22cf7",
   "metadata": {},
   "source": [
    "### Step 7: Gene Identifier Mapping"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "2e43a7c8",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. Analyze the gene annotation dataframe to identify the correct columns for mapping\n",
    "# Based on the previous output, we need:\n",
    "# - 'ID' column which contains the probe identifiers matching those in gene_data\n",
    "# - 'GENE_SYMBOL' column which contains the gene symbols we want to map to\n",
    "\n",
    "# First get the gene expression data and annotation data again\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "gene_expression_data = get_genetic_data(matrix_file)\n",
    "gene_annotation = get_gene_annotation(soft_file)\n",
    "\n",
    "# Display the first few rows of gene annotation to confirm column selection\n",
    "print(\"First few rows of gene annotation:\")\n",
    "print(gene_annotation[['ID', 'GENE_SYMBOL']].head())\n",
    "\n",
    "# 2. Get a gene mapping dataframe\n",
    "# Extract the relevant columns for mapping: probe IDs and gene symbols\n",
    "mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='GENE_SYMBOL')\n",
    "print(f\"\\nMapping dataframe shape: {mapping_df.shape}\")\n",
    "print(\"First few rows of mapping data:\")\n",
    "print(mapping_df.head())\n",
    "\n",
    "# 3. Apply gene mapping to convert probe-level data to gene-level data\n",
    "gene_data = apply_gene_mapping(gene_expression_data, mapping_df)\n",
    "print(f\"\\nConverted gene expression data shape: {gene_data.shape}\")\n",
    "print(\"First few gene symbols:\")\n",
    "print(gene_data.index[:10].tolist())\n",
    "\n",
    "# Normalize gene symbols to ensure consistency\n",
    "gene_data = normalize_gene_symbols_in_index(gene_data)\n",
    "print(f\"\\nAfter normalization, gene data shape: {gene_data.shape}\")\n",
    "print(\"First few normalized gene symbols:\")\n",
    "print(gene_data.index[:10].tolist())\n",
    "\n",
    "# Save the gene data to a file\n",
    "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
    "gene_data.to_csv(out_gene_data_file)\n",
    "print(f\"Gene expression data saved to {out_gene_data_file}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "af08ca6f",
   "metadata": {},
   "source": [
    "### Step 8: Data Normalization and Linking"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "a29771d5",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. Identify the paths to the SOFT file and the matrix file\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# Define the functions for extracting clinical features\n",
    "def convert_trait(value):\n",
    "    \"\"\"Convert clinical course to binary format: 1 for progressive, 0 for stable\"\"\"\n",
    "    if pd.isna(value):\n",
    "        return None\n",
    "    \n",
    "    value = str(value).lower().strip()\n",
    "    if ':' in value:\n",
    "        value = value.split(':', 1)[1].strip()\n",
    "    \n",
    "    if value == 'progressive':\n",
    "        return 1\n",
    "    elif value == 'stable':\n",
    "        return 0\n",
    "    else:\n",
    "        return None\n",
    "\n",
    "def convert_age(value):\n",
    "    \"\"\"Convert age data to float\"\"\"\n",
    "    if pd.isna(value):\n",
    "        return None\n",
    "    \n",
    "    value = str(value).strip()\n",
    "    if ':' in value:\n",
    "        age_str = value.split(':', 1)[1].strip()\n",
    "        try:\n",
    "            return float(age_str)\n",
    "        except ValueError:\n",
    "            return None\n",
    "    return None\n",
    "\n",
    "def convert_gender(value):\n",
    "    \"\"\"Convert gender to binary: 0 for female, 1 for male\"\"\"\n",
    "    if pd.isna(value):\n",
    "        return None\n",
    "    \n",
    "    value = str(value).lower().strip()\n",
    "    if ':' in value:\n",
    "        value = value.split(':', 1)[1].strip()\n",
    "    \n",
    "    if value == 'female':\n",
    "        return 0\n",
    "    elif value == 'male':\n",
    "        return 1\n",
    "    return None\n",
    "\n",
    "# Re-extract clinical data if the saved file doesn't exist\n",
    "background_info, clinical_data = get_background_and_clinical_data(matrix_file)\n",
    "trait_row = 4  # Based on the analysis in step 2\n",
    "age_row = 1    # Based on the analysis in step 2\n",
    "gender_row = 0 # Based on the analysis in step 2\n",
    "\n",
    "# Extract clinical features\n",
    "selected_clinical_df = geo_select_clinical_features(\n",
    "    clinical_df=clinical_data,\n",
    "    trait=trait,\n",
    "    trait_row=trait_row,\n",
    "    convert_trait=convert_trait,\n",
    "    age_row=age_row,\n",
    "    convert_age=convert_age,\n",
    "    gender_row=gender_row,\n",
    "    convert_gender=convert_gender\n",
    ")\n",
    "print(f\"Clinical data shape: {selected_clinical_df.shape}\")\n",
    "print(\"Clinical data preview:\")\n",
    "print(preview_df(selected_clinical_df))\n",
    "\n",
    "# Save the clinical data\n",
    "os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "selected_clinical_df.to_csv(out_clinical_data_file)\n",
    "print(f\"Clinical data saved to {out_clinical_data_file}\")\n",
    "\n",
    "# 1. Load the normalized gene data (already done in step 7)\n",
    "if 'gene_data' not in locals():\n",
    "    gene_data = pd.read_csv(out_gene_data_file, index_col=0)\n",
    "    print(f\"Loaded gene data from {out_gene_data_file}\")\n",
    "\n",
    "# 2. Link the clinical and genetic data\n",
    "print(\"\\nLinking clinical and genetic data...\")\n",
    "linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data)\n",
    "print(f\"Linked data shape: {linked_data.shape}\")\n",
    "print(\"Linked data preview (first 5 rows, first 5 columns):\")\n",
    "print(linked_data.iloc[:5, :5])\n",
    "\n",
    "# 3. Handle missing values in the linked data\n",
    "print(\"\\nHandling missing values...\")\n",
    "linked_data = handle_missing_values(linked_data, trait)\n",
    "print(f\"Linked data shape after handling missing values: {linked_data.shape}\")\n",
    "\n",
    "# 4. Determine if the trait and demographic features are biased\n",
    "print(\"\\nChecking for bias in trait and demographic features...\")\n",
    "is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)\n",
    "\n",
    "# 5. Conduct final quality validation and save relevant information\n",
    "print(\"\\nConducting final quality validation...\")\n",
    "is_gene_available = True  # We've confirmed gene data is available in previous steps\n",
    "is_trait_available = True  # We've confirmed trait data is available in previous steps\n",
    "\n",
    "note = \"This dataset contains gene expression data from kidney biopsies. It classifies samples based on clinical course (stable or progressive chronic kidney disease).\"\n",
    "\n",
    "is_usable = validate_and_save_cohort_info(\n",
    "    is_final=True,\n",
    "    cohort=cohort,\n",
    "    info_path=json_path,\n",
    "    is_gene_available=is_gene_available,\n",
    "    is_trait_available=is_trait_available,\n",
    "    is_biased=is_biased,\n",
    "    df=linked_data,\n",
    "    note=note\n",
    ")\n",
    "\n",
    "# 6. Save the linked data if it's usable\n",
    "if is_usable:\n",
    "    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
    "    linked_data.to_csv(out_data_file)\n",
    "    print(f\"Linked data saved to {out_data_file}\")\n",
    "else:\n",
    "    print(\"Linked data not saved as dataset is not usable for the current trait study.\")"
   ]
  }
 ],
 "metadata": {},
 "nbformat": 4,
 "nbformat_minor": 5
}