File size: 39,108 Bytes
32677ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "f3ca4284",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T08:32:39.582161Z",
     "iopub.status.busy": "2025-03-25T08:32:39.581989Z",
     "iopub.status.idle": "2025-03-25T08:32:39.743906Z",
     "shell.execute_reply": "2025-03-25T08:32:39.743515Z"
    }
   },
   "outputs": [],
   "source": [
    "import sys\n",
    "import os\n",
    "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
    "\n",
    "# Path Configuration\n",
    "from tools.preprocess import *\n",
    "\n",
    "# Processing context\n",
    "trait = \"Crohns_Disease\"\n",
    "cohort = \"GSE186582\"\n",
    "\n",
    "# Input paths\n",
    "in_trait_dir = \"../../input/GEO/Crohns_Disease\"\n",
    "in_cohort_dir = \"../../input/GEO/Crohns_Disease/GSE186582\"\n",
    "\n",
    "# Output paths\n",
    "out_data_file = \"../../output/preprocess/Crohns_Disease/GSE186582.csv\"\n",
    "out_gene_data_file = \"../../output/preprocess/Crohns_Disease/gene_data/GSE186582.csv\"\n",
    "out_clinical_data_file = \"../../output/preprocess/Crohns_Disease/clinical_data/GSE186582.csv\"\n",
    "json_path = \"../../output/preprocess/Crohns_Disease/cohort_info.json\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "bdac06dd",
   "metadata": {},
   "source": [
    "### Step 1: Initial Data Loading"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "790395c8",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T08:32:39.745415Z",
     "iopub.status.busy": "2025-03-25T08:32:39.745257Z",
     "iopub.status.idle": "2025-03-25T08:32:40.153638Z",
     "shell.execute_reply": "2025-03-25T08:32:40.153133Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Background Information:\n",
      "!Series_title\t\"Expression data from intestinal mucosa of patients with Crohn disease\"\n",
      "!Series_summary\t\"We used microarrays to detail the global signature of gene expression underlying endoscopic recurrence of CD and identified distinct gene signature predicting postoperative recurrence.\"\n",
      "!Series_overall_design\t\"Ileal samples from Crohn's disease patients and healthy samples from non-inflammatory controls were collected for RNA extraction and hybridization on Affymetrix microarrays. Inclusion criteria were age >18 years, ileal or ileocolonic CD and indication of CD‐related intestinal surgery. Endoscopic recurrence was defined by the presence of any ulcerated lesions at the anastomosis and/or on the neo-terminal ileum (Rutgeerts score > i0). Five hundred and twenty samples (520) were collected from the inflamed ileum (M0I) and the ileal margin (M0M) at time of surgery, and during post-operative endoscopy six month later (M6). We also collected 25 ileal non-IBD control biopsies (Ctrl) from patients who underwent ileocecal resection for colonic tumour with a healthy ileum.\"\n",
      "Sample Characteristics Dictionary:\n",
      "{0: ['location: M6', 'location: M0I', 'location: M0M', 'location: Ctrl'], 1: ['gender: Female', 'gender: Male'], 2: ['smoking: Yes', 'smoking: No', 'smoking: Ctrl'], 3: ['postoperative anti tnf treatment: No', 'postoperative anti tnf treatment: Yes', 'postoperative anti tnf treatment: Ctrl'], 4: ['rutgeerts: 0', 'rutgeerts: i2b', 'rutgeerts: 1', 'rutgeerts: Ctrl', 'rutgeerts: i2a', 'rutgeerts: i3', 'rutgeerts: i4'], 5: ['rutgeertrec: Rem', 'rutgeertrec: Rec', 'rutgeertrec: Ctrl']}\n"
     ]
    }
   ],
   "source": [
    "from tools.preprocess import *\n",
    "# 1. Identify the paths to the SOFT file and the matrix file\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. Read the matrix file to obtain background information and sample characteristics data\n",
    "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
    "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
    "background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
    "\n",
    "# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
    "sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
    "\n",
    "# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
    "print(\"Background Information:\")\n",
    "print(background_info)\n",
    "print(\"Sample Characteristics Dictionary:\")\n",
    "print(sample_characteristics_dict)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "e021ac7e",
   "metadata": {},
   "source": [
    "### Step 2: Dataset Analysis and Clinical Feature Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "ee8f04ec",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T08:32:40.154943Z",
     "iopub.status.busy": "2025-03-25T08:32:40.154827Z",
     "iopub.status.idle": "2025-03-25T08:32:40.160041Z",
     "shell.execute_reply": "2025-03-25T08:32:40.159647Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Data Analysis Results:\n",
      "Gene Expression Available: True\n",
      "Trait Data Available: True\n",
      "Trait Row: 5\n",
      "Gender Row: 1\n",
      "Age Row: None\n"
     ]
    }
   ],
   "source": [
    "import pandas as pd\n",
    "import numpy as np\n",
    "import os\n",
    "import json\n",
    "from typing import Optional, Callable, Dict, Any, List\n",
    "\n",
    "# 1. Gene Expression Data Availability\n",
    "# Based on the Series_summary and Series_overall_design, this dataset contains gene expression data\n",
    "# from microarrays (Affymetrix), which is suitable for our analysis.\n",
    "is_gene_available = True\n",
    "\n",
    "# 2. Variable Availability and Data Type Conversion\n",
    "# 2.1 Data Availability\n",
    "\n",
    "# For trait (Crohn's Disease):\n",
    "# The 'rutgeertrec' at key 5 indicates recurrence status which can be used for Crohn's Disease status\n",
    "# Values: 'Rem' (Remission), 'Rec' (Recurrence), 'Ctrl' (Control subjects)\n",
    "trait_row = 5\n",
    "\n",
    "# For gender:\n",
    "# Gender information is available at key 1\n",
    "gender_row = 1\n",
    "\n",
    "# For age:\n",
    "# Age information is not available in the data\n",
    "age_row = None\n",
    "\n",
    "# 2.2 Data Type Conversion Functions\n",
    "\n",
    "def convert_trait(value: str) -> int:\n",
    "    \"\"\"\n",
    "    Convert trait value to binary. \n",
    "    Ctrl (control/healthy) = 0, Rem/Rec (Crohn's disease variants) = 1\n",
    "    \"\"\"\n",
    "    if value is None:\n",
    "        return None\n",
    "    \n",
    "    # Extract value after colon if present\n",
    "    if \":\" in value:\n",
    "        value = value.split(\":\", 1)[1].strip()\n",
    "    \n",
    "    # Convert to binary: Control=0, Recurrence/Remission=1 (both are Crohn's Disease)\n",
    "    if value == \"Ctrl\":\n",
    "        return 0\n",
    "    elif value in [\"Rem\", \"Rec\"]:\n",
    "        return 1\n",
    "    else:\n",
    "        return None\n",
    "\n",
    "def convert_gender(value: str) -> int:\n",
    "    \"\"\"\n",
    "    Convert gender to binary. Female = 0, Male = 1\n",
    "    \"\"\"\n",
    "    if value is None:\n",
    "        return None\n",
    "    \n",
    "    # Extract value after colon if present\n",
    "    if \":\" in value:\n",
    "        value = value.split(\":\", 1)[1].strip()\n",
    "    \n",
    "    # Convert to binary\n",
    "    if value.lower() == \"female\":\n",
    "        return 0\n",
    "    elif value.lower() == \"male\":\n",
    "        return 1\n",
    "    else:\n",
    "        return None\n",
    "\n",
    "def convert_age(value: str) -> Optional[float]:\n",
    "    \"\"\"\n",
    "    Convert age value to float.\n",
    "    This function is defined for completeness but won't be used as age data is unavailable.\n",
    "    \"\"\"\n",
    "    return None\n",
    "\n",
    "# 3. Save Metadata - Initial Filtering\n",
    "# Check if trait data is available (trait_row is not None)\n",
    "is_trait_available = trait_row is not None\n",
    "validate_and_save_cohort_info(\n",
    "    is_final=False,\n",
    "    cohort=cohort,\n",
    "    info_path=json_path,\n",
    "    is_gene_available=is_gene_available,\n",
    "    is_trait_available=is_trait_available\n",
    ")\n",
    "\n",
    "# Since we're only doing analysis in this step and not extracting features yet,\n",
    "# we'll stop here. The clinical feature extraction will be handled in a later step\n",
    "# when we have the appropriate data structures.\n",
    "\n",
    "print(f\"Data Analysis Results:\")\n",
    "print(f\"Gene Expression Available: {is_gene_available}\")\n",
    "print(f\"Trait Data Available: {is_trait_available}\")\n",
    "print(f\"Trait Row: {trait_row}\")\n",
    "print(f\"Gender Row: {gender_row}\")\n",
    "print(f\"Age Row: {age_row}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "d6dc50ec",
   "metadata": {},
   "source": [
    "### Step 3: Gene Data Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "fe10ba0d",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T08:32:40.161188Z",
     "iopub.status.busy": "2025-03-25T08:32:40.161082Z",
     "iopub.status.idle": "2025-03-25T08:32:40.988045Z",
     "shell.execute_reply": "2025-03-25T08:32:40.987646Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "First 20 gene/probe identifiers:\n",
      "Index(['1053_at', '121_at', '1316_at', '1405_i_at', '1487_at', '1552256_a_at',\n",
      "       '1552257_a_at', '1552258_at', '1552266_at', '1552269_at',\n",
      "       '1552272_a_at', '1552274_at', '1552277_a_at', '1552280_at',\n",
      "       '1552281_at', '1552286_at', '1552287_s_at', '1552289_a_at',\n",
      "       '1552293_at', '1552296_at'],\n",
      "      dtype='object', name='ID')\n",
      "\n",
      "Gene data dimensions: 20186 genes × 489 samples\n"
     ]
    }
   ],
   "source": [
    "# 1. Re-identify the SOFT and matrix files to ensure we have the correct paths\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. Extract the gene expression data from the matrix file\n",
    "gene_data = get_genetic_data(matrix_file)\n",
    "\n",
    "# 3. Print the first 20 row IDs (gene or probe identifiers)\n",
    "print(\"\\nFirst 20 gene/probe identifiers:\")\n",
    "print(gene_data.index[:20])\n",
    "\n",
    "# 4. Print the dimensions of the gene expression data\n",
    "print(f\"\\nGene data dimensions: {gene_data.shape[0]} genes × {gene_data.shape[1]} samples\")\n",
    "\n",
    "# Note: we keep is_gene_available as True since we successfully extracted gene expression data\n",
    "is_gene_available = True\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "89f9b08e",
   "metadata": {},
   "source": [
    "### Step 4: Gene Identifier Review"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "2371ec5d",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T08:32:40.989371Z",
     "iopub.status.busy": "2025-03-25T08:32:40.989246Z",
     "iopub.status.idle": "2025-03-25T08:32:40.991195Z",
     "shell.execute_reply": "2025-03-25T08:32:40.990850Z"
    }
   },
   "outputs": [],
   "source": [
    "# The identifiers appear to be Affymetrix probe IDs (e.g., \"1053_at\", \"121_at\") rather than standard human gene symbols\n",
    "# These require mapping to standard gene symbols for proper analysis\n",
    "\n",
    "requires_gene_mapping = True\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "fa7ce3e5",
   "metadata": {},
   "source": [
    "### Step 5: Gene Annotation"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "006c0f4b",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T08:32:40.992583Z",
     "iopub.status.busy": "2025-03-25T08:32:40.992273Z",
     "iopub.status.idle": "2025-03-25T08:32:54.825719Z",
     "shell.execute_reply": "2025-03-25T08:32:54.825187Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Gene annotation dataframe column names:\n",
      "Index(['ID', 'GB_ACC', 'SPOT_ID', 'Species Scientific Name', 'Annotation Date',\n",
      "       'Sequence Type', 'Sequence Source', 'Target Description',\n",
      "       'Representative Public ID', 'Gene Title', 'Gene Symbol',\n",
      "       'ENTREZ_GENE_ID', 'RefSeq Transcript ID',\n",
      "       'Gene Ontology Biological Process', 'Gene Ontology Cellular Component',\n",
      "       'Gene Ontology Molecular Function'],\n",
      "      dtype='object')\n",
      "\n",
      "Preview of gene annotation data:\n",
      "{'ID': ['1007_s_at', '1053_at', '117_at'], 'GB_ACC': ['U48705', 'M87338', 'X51757'], 'SPOT_ID': [nan, nan, nan], 'Species Scientific Name': ['Homo sapiens', 'Homo sapiens', 'Homo sapiens'], 'Annotation Date': ['Oct 6, 2014', 'Oct 6, 2014', 'Oct 6, 2014'], 'Sequence Type': ['Exemplar sequence', 'Exemplar sequence', 'Exemplar sequence'], 'Sequence Source': ['Affymetrix Proprietary Database', 'GenBank', 'Affymetrix Proprietary Database'], 'Target Description': ['U48705 /FEATURE=mRNA /DEFINITION=HSU48705 Human receptor tyrosine kinase DDR gene, complete cds', 'M87338 /FEATURE= /DEFINITION=HUMA1SBU Human replication factor C, 40-kDa subunit (A1) mRNA, complete cds', \"X51757 /FEATURE=cds /DEFINITION=HSP70B Human heat-shock protein HSP70B' gene\"], 'Representative Public ID': ['U48705', 'M87338', 'X51757'], 'Gene Title': ['discoidin domain receptor tyrosine kinase 1 /// microRNA 4640', 'replication factor C (activator 1) 2, 40kDa', \"heat shock 70kDa protein 6 (HSP70B')\"], 'Gene Symbol': ['DDR1 /// MIR4640', 'RFC2', 'HSPA6'], 'ENTREZ_GENE_ID': ['780 /// 100616237', '5982', '3310'], 'RefSeq Transcript ID': ['NM_001202521 /// NM_001202522 /// NM_001202523 /// NM_001954 /// NM_013993 /// NM_013994 /// NR_039783 /// XM_005249385 /// XM_005249386 /// XM_005249387 /// XM_005249389 /// XM_005272873 /// XM_005272874 /// XM_005272875 /// XM_005272877 /// XM_005275027 /// XM_005275028 /// XM_005275030 /// XM_005275031 /// XM_005275162 /// XM_005275163 /// XM_005275164 /// XM_005275166 /// XM_005275457 /// XM_005275458 /// XM_005275459 /// XM_005275461 /// XM_006715185 /// XM_006715186 /// XM_006715187 /// XM_006715188 /// XM_006715189 /// XM_006715190 /// XM_006725501 /// XM_006725502 /// XM_006725503 /// XM_006725504 /// XM_006725505 /// XM_006725506 /// XM_006725714 /// XM_006725715 /// XM_006725716 /// XM_006725717 /// XM_006725718 /// XM_006725719 /// XM_006725720 /// XM_006725721 /// XM_006725722 /// XM_006725827 /// XM_006725828 /// XM_006725829 /// XM_006725830 /// XM_006725831 /// XM_006725832 /// XM_006726017 /// XM_006726018 /// XM_006726019 /// XM_006726020 /// XM_006726021 /// XM_006726022 /// XR_427836 /// XR_430858 /// XR_430938 /// XR_430974 /// XR_431015', 'NM_001278791 /// NM_001278792 /// NM_001278793 /// NM_002914 /// NM_181471 /// XM_006716080', 'NM_002155'], 'Gene Ontology Biological Process': ['0001558 // regulation of cell growth // inferred from electronic annotation /// 0001952 // regulation of cell-matrix adhesion // inferred from electronic annotation /// 0006468 // protein phosphorylation // inferred from electronic annotation /// 0007155 // cell adhesion // traceable author statement /// 0007169 // transmembrane receptor protein tyrosine kinase signaling pathway // inferred from electronic annotation /// 0007565 // female pregnancy // inferred from electronic annotation /// 0007566 // embryo implantation // inferred from electronic annotation /// 0007595 // lactation // inferred from electronic annotation /// 0008285 // negative regulation of cell proliferation // inferred from electronic annotation /// 0010715 // regulation of extracellular matrix disassembly // inferred from mutant phenotype /// 0014909 // smooth muscle cell migration // inferred from mutant phenotype /// 0016310 // phosphorylation // inferred from electronic annotation /// 0018108 // peptidyl-tyrosine phosphorylation // inferred from electronic annotation /// 0030198 // extracellular matrix organization // traceable author statement /// 0038063 // collagen-activated tyrosine kinase receptor signaling pathway // inferred from direct assay /// 0038063 // collagen-activated tyrosine kinase receptor signaling pathway // inferred from mutant phenotype /// 0038083 // peptidyl-tyrosine autophosphorylation // inferred from direct assay /// 0043583 // ear development // inferred from electronic annotation /// 0044319 // wound healing, spreading of cells // inferred from mutant phenotype /// 0046777 // protein autophosphorylation // inferred from direct assay /// 0060444 // branching involved in mammary gland duct morphogenesis // inferred from electronic annotation /// 0060749 // mammary gland alveolus development // inferred from electronic annotation /// 0061302 // smooth muscle cell-matrix adhesion // inferred from mutant phenotype', '0000278 // mitotic cell cycle // traceable author statement /// 0000722 // telomere maintenance via recombination // traceable author statement /// 0000723 // telomere maintenance // traceable author statement /// 0006260 // DNA replication // traceable author statement /// 0006271 // DNA strand elongation involved in DNA replication // traceable author statement /// 0006281 // DNA repair // traceable author statement /// 0006283 // transcription-coupled nucleotide-excision repair // traceable author statement /// 0006289 // nucleotide-excision repair // traceable author statement /// 0006297 // nucleotide-excision repair, DNA gap filling // traceable author statement /// 0015979 // photosynthesis // inferred from electronic annotation /// 0015995 // chlorophyll biosynthetic process // inferred from electronic annotation /// 0032201 // telomere maintenance via semi-conservative replication // traceable author statement', '0000902 // cell morphogenesis // inferred from electronic annotation /// 0006200 // ATP catabolic process // inferred from direct assay /// 0006950 // response to stress // inferred from electronic annotation /// 0006986 // response to unfolded protein // traceable author statement /// 0034605 // cellular response to heat // inferred from direct assay /// 0042026 // protein refolding // inferred from direct assay /// 0070370 // cellular heat acclimation // inferred from mutant phenotype'], 'Gene Ontology Cellular Component': ['0005576 // extracellular region // inferred from electronic annotation /// 0005615 // extracellular space // inferred from direct assay /// 0005886 // plasma membrane // traceable author statement /// 0005887 // integral component of plasma membrane // traceable author statement /// 0016020 // membrane // inferred from electronic annotation /// 0016021 // integral component of membrane // inferred from electronic annotation /// 0043235 // receptor complex // inferred from direct assay /// 0070062 // extracellular vesicular exosome // inferred from direct assay', '0005634 // nucleus // inferred from electronic annotation /// 0005654 // nucleoplasm // traceable author statement /// 0005663 // DNA replication factor C complex // inferred from direct assay', '0005737 // cytoplasm // inferred from direct assay /// 0005814 // centriole // inferred from direct assay /// 0005829 // cytosol // inferred from direct assay /// 0008180 // COP9 signalosome // inferred from direct assay /// 0070062 // extracellular vesicular exosome // inferred from direct assay /// 0072562 // blood microparticle // inferred from direct assay'], 'Gene Ontology Molecular Function': ['0000166 // nucleotide binding // inferred from electronic annotation /// 0004672 // protein kinase activity // inferred from electronic annotation /// 0004713 // protein tyrosine kinase activity // inferred from electronic annotation /// 0004714 // transmembrane receptor protein tyrosine kinase activity // traceable author statement /// 0005515 // protein binding // inferred from physical interaction /// 0005518 // collagen binding // inferred from direct assay /// 0005518 // collagen binding // inferred from mutant phenotype /// 0005524 // ATP binding // inferred from electronic annotation /// 0016301 // kinase activity // inferred from electronic annotation /// 0016740 // transferase activity // inferred from electronic annotation /// 0016772 // transferase activity, transferring phosphorus-containing groups // inferred from electronic annotation /// 0038062 // protein tyrosine kinase collagen receptor activity // inferred from direct assay /// 0046872 // metal ion binding // inferred from electronic annotation', '0000166 // nucleotide binding // inferred from electronic annotation /// 0003677 // DNA binding // inferred from electronic annotation /// 0005515 // protein binding // inferred from physical interaction /// 0005524 // ATP binding // inferred from electronic annotation /// 0016851 // magnesium chelatase activity // inferred from electronic annotation /// 0017111 // nucleoside-triphosphatase activity // inferred from electronic annotation', '0000166 // nucleotide binding // inferred from electronic annotation /// 0005524 // ATP binding // inferred from electronic annotation /// 0019899 // enzyme binding // inferred from physical interaction /// 0031072 // heat shock protein binding // inferred from physical interaction /// 0042623 // ATPase activity, coupled // inferred from direct assay /// 0051082 // unfolded protein binding // inferred from direct assay']}\n"
     ]
    }
   ],
   "source": [
    "# 1. First get the file paths using geo_get_relevant_filepaths function\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. Extract gene annotation data from the SOFT file\n",
    "gene_annotation = get_gene_annotation(soft_file)\n",
    "\n",
    "# 3. Preview the gene annotation dataframe\n",
    "print(\"Gene annotation dataframe column names:\")\n",
    "print(gene_annotation.columns)\n",
    "\n",
    "# Preview the first few rows to understand the data structure\n",
    "print(\"\\nPreview of gene annotation data:\")\n",
    "annotation_preview = preview_df(gene_annotation, n=3)\n",
    "print(annotation_preview)\n",
    "\n",
    "# Maintain gene availability status as True based on previous steps\n",
    "is_gene_available = True\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "1ea1401b",
   "metadata": {},
   "source": [
    "### Step 6: Gene Identifier Mapping"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "4f8abff1",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T08:32:54.827050Z",
     "iopub.status.busy": "2025-03-25T08:32:54.826911Z",
     "iopub.status.idle": "2025-03-25T08:32:55.537247Z",
     "shell.execute_reply": "2025-03-25T08:32:55.536712Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Number of unique genes after mapping: 18409\n",
      "First 10 gene symbols: ['A1BG', 'A1BG-AS1', 'A1CF', 'A2M', 'A2M-AS1', 'A2ML1', 'A2MP1', 'A4GALT', 'A4GNT', 'AA06']\n",
      "Gene expression data shape after mapping: 18409 genes × 489 samples\n"
     ]
    }
   ],
   "source": [
    "# 1. Determine which columns contain the probe IDs and gene symbols\n",
    "# From examining the data:\n",
    "# - 'ID' column contains probe identifiers (e.g., '1007_s_at', '1053_at')\n",
    "# - 'Gene Symbol' column contains the gene symbols (e.g., 'DDR1 /// MIR4640', 'RFC2')\n",
    "\n",
    "# 2. Create a gene mapping dataframe\n",
    "gene_mapping = get_gene_mapping(gene_annotation, 'ID', 'Gene Symbol')\n",
    "\n",
    "# 3. Apply the gene mapping to convert probe measurements to gene expression data\n",
    "gene_data = apply_gene_mapping(gene_data, gene_mapping)\n",
    "\n",
    "# Print some information about the results\n",
    "print(f\"Number of unique genes after mapping: {len(gene_data.index)}\")\n",
    "print(f\"First 10 gene symbols: {gene_data.index[:10].tolist()}\")\n",
    "print(f\"Gene expression data shape after mapping: {gene_data.shape[0]} genes × {gene_data.shape[1]} samples\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "a2475930",
   "metadata": {},
   "source": [
    "### Step 7: Data Normalization and Linking"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "85de490c",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T08:32:55.538680Z",
     "iopub.status.busy": "2025-03-25T08:32:55.538568Z",
     "iopub.status.idle": "2025-03-25T08:33:31.175049Z",
     "shell.execute_reply": "2025-03-25T08:33:31.174603Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Normalizing gene symbols...\n",
      "Gene data shape after normalization: 18122 genes × 489 samples\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Normalized gene expression data saved to ../../output/preprocess/Crohns_Disease/gene_data/GSE186582.csv\n",
      "Extracting clinical features from the original source...\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Extracted clinical features preview:\n",
      "{'GSM5656170': [1.0, 0.0], 'GSM5656171': [1.0, 0.0], 'GSM5656172': [1.0, 0.0], 'GSM5656173': [1.0, 0.0], 'GSM5656174': [1.0, 0.0], 'GSM5656175': [1.0, 1.0], 'GSM5656176': [1.0, 1.0], 'GSM5656177': [1.0, 1.0], 'GSM5656178': [1.0, 1.0], 'GSM5656179': [1.0, 1.0], 'GSM5656180': [0.0, 1.0], 'GSM5656181': [1.0, 0.0], 'GSM5656182': [1.0, 0.0], 'GSM5656183': [1.0, 0.0], 'GSM5656184': [1.0, 1.0], 'GSM5656185': [0.0, 1.0], 'GSM5656186': [1.0, 1.0], 'GSM5656187': [1.0, 1.0], 'GSM5656188': [1.0, 1.0], 'GSM5656189': [0.0, 0.0], 'GSM5656190': [0.0, 1.0], 'GSM5656191': [1.0, 1.0], 'GSM5656192': [1.0, 1.0], 'GSM5656193': [1.0, 0.0], 'GSM5656194': [1.0, 0.0], 'GSM5656195': [1.0, 0.0], 'GSM5656196': [1.0, 0.0], 'GSM5656197': [1.0, 0.0], 'GSM5656198': [1.0, 0.0], 'GSM5656199': [1.0, 0.0], 'GSM5656200': [1.0, 1.0], 'GSM5656201': [1.0, 1.0], 'GSM5656202': [0.0, 1.0], 'GSM5656203': [1.0, 1.0], 'GSM5656204': [1.0, 1.0], 'GSM5656205': [1.0, 1.0], 'GSM5656206': [1.0, 1.0], 'GSM5656207': [1.0, 1.0], 'GSM5656208': [0.0, 1.0], 'GSM5656209': [1.0, 1.0], 'GSM5656210': [1.0, 1.0], 'GSM5656211': [1.0, 0.0], 'GSM5656212': [1.0, 0.0], 'GSM5656213': [1.0, 0.0], 'GSM5656214': [1.0, 0.0], 'GSM5656215': [1.0, 0.0], 'GSM5656216': [1.0, 0.0], 'GSM5656217': [1.0, 0.0], 'GSM5656218': [1.0, 0.0], 'GSM5656219': [1.0, 1.0], 'GSM5656220': [1.0, 1.0], 'GSM5656221': [1.0, 1.0], 'GSM5656222': [1.0, 0.0], 'GSM5656223': [1.0, 0.0], 'GSM5656224': [1.0, 0.0], 'GSM5656225': [1.0, 1.0], 'GSM5656226': [1.0, 1.0], 'GSM5656227': [1.0, 1.0], 'GSM5656228': [1.0, 1.0], 'GSM5656229': [1.0, 1.0], 'GSM5656230': [0.0, 0.0], 'GSM5656231': [1.0, 1.0], 'GSM5656232': [0.0, 1.0], 'GSM5656233': [1.0, 1.0], 'GSM5656234': [1.0, 1.0], 'GSM5656235': [1.0, 1.0], 'GSM5656236': [1.0, 0.0], 'GSM5656237': [1.0, 0.0], 'GSM5656238': [0.0, 1.0], 'GSM5656239': [1.0, 0.0], 'GSM5656240': [1.0, 0.0], 'GSM5656241': [1.0, 0.0], 'GSM5656242': [1.0, 1.0], 'GSM5656243': [1.0, 1.0], 'GSM5656244': [1.0, 1.0], 'GSM5656245': [0.0, 1.0], 'GSM5656246': [1.0, 0.0], 'GSM5656247': [1.0, 0.0], 'GSM5656248': [1.0, 0.0], 'GSM5656249': [1.0, 1.0], 'GSM5656250': [1.0, 1.0], 'GSM5656251': [1.0, 1.0], 'GSM5656252': [1.0, 1.0], 'GSM5656253': [1.0, 1.0], 'GSM5656254': [1.0, 1.0], 'GSM5656255': [1.0, 1.0], 'GSM5656256': [1.0, 1.0], 'GSM5656257': [1.0, 1.0], 'GSM5656258': [0.0, 1.0], 'GSM5656259': [1.0, 0.0], 'GSM5656260': [1.0, 0.0], 'GSM5656261': [1.0, 1.0], 'GSM5656262': [1.0, 1.0], 'GSM5656263': [1.0, 1.0], 'GSM5656264': [1.0, 1.0], 'GSM5656265': [1.0, 1.0], 'GSM5656266': [1.0, 1.0], 'GSM5656267': [1.0, 0.0], 'GSM5656268': [1.0, 0.0], 'GSM5656269': [1.0, 0.0], 'GSM5656270': [0.0, 0.0], 'GSM5656271': [0.0, 1.0], 'GSM5656272': [1.0, 0.0], 'GSM5656273': [1.0, 0.0], 'GSM5656274': [1.0, 1.0], 'GSM5656275': [1.0, 1.0], 'GSM5656276': [1.0, 1.0], 'GSM5656277': [1.0, 1.0], 'GSM5656278': [1.0, 1.0], 'GSM5656279': [0.0, 1.0], 'GSM5656280': [1.0, 1.0], 'GSM5656281': [1.0, 1.0], 'GSM5656282': [1.0, 1.0], 'GSM5656283': [0.0, 0.0], 'GSM5656284': [1.0, 1.0], 'GSM5656285': [1.0, 1.0], 'GSM5656286': [1.0, 1.0], 'GSM5656287': [0.0, 0.0], 'GSM5656288': [0.0, 1.0], 'GSM5656289': [1.0, 0.0], 'GSM5656290': [1.0, 0.0], 'GSM5656291': [1.0, 0.0], 'GSM5656292': [0.0, 1.0], 'GSM5656293': [1.0, 0.0], 'GSM5656294': [1.0, 0.0], 'GSM5656295': [1.0, 0.0], 'GSM5656296': [1.0, 0.0], 'GSM5656297': [1.0, 0.0], 'GSM5656298': [1.0, 0.0], 'GSM5656299': [0.0, 1.0], 'GSM5656300': [0.0, 1.0], 'GSM5656301': [1.0, 1.0], 'GSM5656302': [1.0, 1.0], 'GSM5656303': [1.0, 1.0], 'GSM5656304': [0.0, 1.0], 'GSM5656305': [1.0, 0.0], 'GSM5656306': [1.0, 0.0], 'GSM5656307': [1.0, 0.0], 'GSM5656308': [1.0, 0.0], 'GSM5656309': [1.0, 0.0], 'GSM5656310': [0.0, 1.0], 'GSM5656311': [1.0, 0.0], 'GSM5656312': [1.0, 0.0], 'GSM5656313': [0.0, 1.0], 'GSM5656314': [0.0, 0.0], 'GSM5656315': [1.0, 0.0], 'GSM5656316': [1.0, 0.0], 'GSM5656317': [1.0, 0.0], 'GSM5656318': [1.0, 0.0], 'GSM5656319': [1.0, 1.0], 'GSM5656320': [1.0, 1.0], 'GSM5656321': [1.0, 1.0], 'GSM5656322': [1.0, 0.0], 'GSM5656323': [1.0, 0.0], 'GSM5656324': [1.0, 0.0], 'GSM5656325': [1.0, 1.0], 'GSM5656326': [1.0, 1.0], 'GSM5656327': [1.0, 0.0], 'GSM5656328': [1.0, 0.0], 'GSM5656329': [1.0, 0.0], 'GSM5656330': [1.0, 0.0], 'GSM5656331': [1.0, 0.0], 'GSM5656332': [1.0, 0.0], 'GSM5656333': [1.0, 0.0], 'GSM5656334': [1.0, 0.0], 'GSM5656335': [1.0, 0.0], 'GSM5656336': [1.0, 0.0], 'GSM5656337': [1.0, 0.0], 'GSM5656338': [1.0, 1.0], 'GSM5656339': [1.0, 1.0], 'GSM5656340': [1.0, 1.0], 'GSM5656341': [1.0, 1.0], 'GSM5656342': [1.0, 1.0], 'GSM5656343': [1.0, 1.0], 'GSM5656344': [1.0, 1.0], 'GSM5656345': [1.0, 1.0], 'GSM5656346': [1.0, 1.0], 'GSM5656347': [1.0, 0.0], 'GSM5656348': [1.0, 0.0], 'GSM5656349': [1.0, 0.0], 'GSM5656350': [1.0, 0.0], 'GSM5656351': [1.0, 0.0], 'GSM5656352': [1.0, 0.0], 'GSM5656353': [1.0, 0.0], 'GSM5656354': [1.0, 0.0], 'GSM5656355': [1.0, 0.0], 'GSM5656356': [1.0, 0.0], 'GSM5656357': [1.0, 1.0], 'GSM5656358': [1.0, 1.0], 'GSM5656359': [1.0, 1.0], 'GSM5656360': [1.0, 1.0], 'GSM5656361': [1.0, 1.0], 'GSM5656362': [1.0, 1.0], 'GSM5656363': [1.0, 1.0], 'GSM5656364': [1.0, 1.0], 'GSM5656365': [1.0, 1.0], 'GSM5656366': [1.0, 1.0], 'GSM5656367': [1.0, 1.0], 'GSM5656368': [1.0, 0.0], 'GSM5656369': [1.0, 0.0]}\n",
      "Clinical data shape: (2, 489)\n",
      "Clinical features saved to ../../output/preprocess/Crohns_Disease/clinical_data/GSE186582.csv\n",
      "Linking clinical and genetic data...\n",
      "Linked data shape: (489, 18124)\n",
      "Handling missing values...\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Data shape after handling missing values: (489, 18124)\n",
      "\n",
      "Checking for bias in feature variables:\n",
      "For the feature 'Crohns_Disease', the least common label is '0.0' with 25 occurrences. This represents 5.11% of the dataset.\n",
      "The distribution of the feature 'Crohns_Disease' in this dataset is fine.\n",
      "\n",
      "For the feature 'Gender', the least common label is '1.0' with 243 occurrences. This represents 49.69% of the dataset.\n",
      "The distribution of the feature 'Gender' in this dataset is fine.\n",
      "\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Linked data saved to ../../output/preprocess/Crohns_Disease/GSE186582.csv\n",
      "Final dataset shape: (489, 18124)\n"
     ]
    }
   ],
   "source": [
    "# 1. Check if gene data is available after mapping\n",
    "if gene_data.shape[0] == 0:\n",
    "    print(\"Error: Gene expression matrix is empty after mapping.\")\n",
    "    # Mark the dataset as not usable due to lack of gene expression data\n",
    "    is_usable = validate_and_save_cohort_info(\n",
    "        is_final=True,\n",
    "        cohort=cohort,\n",
    "        info_path=json_path,\n",
    "        is_gene_available=False,  # No usable gene data\n",
    "        is_trait_available=True,\n",
    "        is_biased=True,\n",
    "        df=pd.DataFrame(),\n",
    "        note=\"Failed to map probe IDs to gene symbols. The annotation format may not be compatible with the extraction methods.\"\n",
    "    )\n",
    "    print(\"Dataset deemed not usable due to lack of gene expression data.\")\n",
    "else:\n",
    "    # Only proceed with normalization if we have gene data\n",
    "    print(\"Normalizing gene symbols...\")\n",
    "    gene_data_normalized = normalize_gene_symbols_in_index(gene_data)\n",
    "    print(f\"Gene data shape after normalization: {gene_data_normalized.shape[0]} genes × {gene_data_normalized.shape[1]} samples\")\n",
    "\n",
    "    # Save the normalized gene data\n",
    "    os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
    "    gene_data_normalized.to_csv(out_gene_data_file)\n",
    "    print(f\"Normalized gene expression data saved to {out_gene_data_file}\")\n",
    "    \n",
    "    # Extract clinical features from the original data source\n",
    "    print(\"Extracting clinical features from the original source...\")\n",
    "    # Get background information and clinical data again\n",
    "    background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
    "    clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
    "    background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
    "    \n",
    "    # Extract clinical features\n",
    "    selected_clinical_df = geo_select_clinical_features(\n",
    "        clinical_df=clinical_data,\n",
    "        trait=trait,\n",
    "        trait_row=trait_row,\n",
    "        convert_trait=convert_trait,\n",
    "        age_row=age_row,\n",
    "        convert_age=convert_age,\n",
    "        gender_row=gender_row,\n",
    "        convert_gender=convert_gender\n",
    "    )\n",
    "    \n",
    "    print(\"Extracted clinical features preview:\")\n",
    "    print(preview_df(selected_clinical_df))\n",
    "    print(f\"Clinical data shape: {selected_clinical_df.shape}\")\n",
    "    \n",
    "    # Save the extracted clinical features\n",
    "    os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "    selected_clinical_df.to_csv(out_clinical_data_file)\n",
    "    print(f\"Clinical features saved to {out_clinical_data_file}\")\n",
    "    \n",
    "    # Link clinical and genetic data\n",
    "    print(\"Linking clinical and genetic data...\")\n",
    "    linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data_normalized)\n",
    "    print(f\"Linked data shape: {linked_data.shape}\")\n",
    "    \n",
    "    # Check if the linked data has adequate data\n",
    "    if linked_data.shape[0] == 0 or linked_data.shape[1] <= 4:  # 4 is an arbitrary small number\n",
    "        print(\"Error: Linked data has insufficient samples or features.\")\n",
    "        is_usable = validate_and_save_cohort_info(\n",
    "            is_final=True,\n",
    "            cohort=cohort,\n",
    "            info_path=json_path,\n",
    "            is_gene_available=True,\n",
    "            is_trait_available=True,\n",
    "            is_biased=True,\n",
    "            df=linked_data,\n",
    "            note=\"Failed to properly link gene expression data with clinical features.\"\n",
    "        )\n",
    "        print(\"Dataset deemed not usable due to linking failure.\")\n",
    "    else:\n",
    "        # Handle missing values systematically\n",
    "        print(\"Handling missing values...\")\n",
    "        linked_data_clean = handle_missing_values(linked_data, trait_col=trait)\n",
    "        print(f\"Data shape after handling missing values: {linked_data_clean.shape}\")\n",
    "        \n",
    "        # Check if there are still samples after missing value handling\n",
    "        if linked_data_clean.shape[0] == 0:\n",
    "            print(\"Error: No samples remain after handling missing values.\")\n",
    "            is_usable = validate_and_save_cohort_info(\n",
    "                is_final=True,\n",
    "                cohort=cohort,\n",
    "                info_path=json_path,\n",
    "                is_gene_available=True,\n",
    "                is_trait_available=True,\n",
    "                is_biased=True,\n",
    "                df=pd.DataFrame(),\n",
    "                note=\"All samples were removed during missing value handling.\"\n",
    "            )\n",
    "            print(\"Dataset deemed not usable as all samples were filtered out.\")\n",
    "        else:\n",
    "            # Check if the dataset is biased\n",
    "            print(\"\\nChecking for bias in feature variables:\")\n",
    "            is_biased, linked_data_final = judge_and_remove_biased_features(linked_data_clean, trait)\n",
    "            \n",
    "            # Conduct final quality validation\n",
    "            is_usable = validate_and_save_cohort_info(\n",
    "                is_final=True,\n",
    "                cohort=cohort,\n",
    "                info_path=json_path,\n",
    "                is_gene_available=True,\n",
    "                is_trait_available=True,\n",
    "                is_biased=is_biased,\n",
    "                df=linked_data_final,\n",
    "                note=\"Dataset contains gene expression data for Crohn's Disease patients, examining response to Infliximab treatment.\"\n",
    "            )\n",
    "            \n",
    "            # Save linked data if usable\n",
    "            if is_usable:\n",
    "                os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
    "                linked_data_final.to_csv(out_data_file)\n",
    "                print(f\"Linked data saved to {out_data_file}\")\n",
    "                print(f\"Final dataset shape: {linked_data_final.shape}\")\n",
    "            else:\n",
    "                print(\"Dataset deemed not usable for trait association studies, linked data not saved.\")"
   ]
  }
 ],
 "metadata": {
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.16"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}