File size: 50,451 Bytes
e4183cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "0f8b4d34",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T08:33:57.360300Z",
     "iopub.status.busy": "2025-03-25T08:33:57.360070Z",
     "iopub.status.idle": "2025-03-25T08:33:57.525603Z",
     "shell.execute_reply": "2025-03-25T08:33:57.525274Z"
    }
   },
   "outputs": [],
   "source": [
    "import sys\n",
    "import os\n",
    "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
    "\n",
    "# Path Configuration\n",
    "from tools.preprocess import *\n",
    "\n",
    "# Processing context\n",
    "trait = \"Crohns_Disease\"\n",
    "cohort = \"GSE207022\"\n",
    "\n",
    "# Input paths\n",
    "in_trait_dir = \"../../input/GEO/Crohns_Disease\"\n",
    "in_cohort_dir = \"../../input/GEO/Crohns_Disease/GSE207022\"\n",
    "\n",
    "# Output paths\n",
    "out_data_file = \"../../output/preprocess/Crohns_Disease/GSE207022.csv\"\n",
    "out_gene_data_file = \"../../output/preprocess/Crohns_Disease/gene_data/GSE207022.csv\"\n",
    "out_clinical_data_file = \"../../output/preprocess/Crohns_Disease/clinical_data/GSE207022.csv\"\n",
    "json_path = \"../../output/preprocess/Crohns_Disease/cohort_info.json\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "3697486b",
   "metadata": {},
   "source": [
    "### Step 1: Initial Data Loading"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "3f907236",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T08:33:57.527022Z",
     "iopub.status.busy": "2025-03-25T08:33:57.526873Z",
     "iopub.status.idle": "2025-03-25T08:33:57.719591Z",
     "shell.execute_reply": "2025-03-25T08:33:57.719251Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Background Information:\n",
      "!Series_title\t\"Efficacy and safety of ustekinumab treatment in patients with Crohn's disease\"\n",
      "!Series_summary\t\"UNITI-2 was a phase 3 clinical trial (ClinicalTrials.gov Identifier: NCT01369342) comparing the effects (both positive and negative) of an initial treatment with ustekinumab to a placebo over 8 weeks in patients with moderately to severely active Crohn's disease.\"\n",
      "!Series_overall_design\t\"A gene expression profiling study was conducted in which rectum biopsy samples were collected for RNA extraction and hybridization to microarrays from patients (n=125) with moderate-to-severe Crohn's disease and from non-IBD subjects (n=23).\"\n",
      "Sample Characteristics Dictionary:\n",
      "{0: ['tissue: rectum'], 1: ['donor id: CNTO1275CRD3002-20554', 'donor id: CNTO1275CRD3002-20667', 'donor id: CNTO1275CRD3002-20449', 'donor id: CNTO1275CRD3002-20927', 'donor id: CNTO1275CRD3002-20270', 'donor id: CNTO1275CRD3002-20072', 'donor id: CNTO1275CRD3002-20109', 'donor id: CNTO1275CRD3002-20346', 'donor id: HC-1', 'donor id: HC-2', 'donor id: HC-3', 'donor id: HC-4', 'donor id: HC-5', 'donor id: HC-6', 'donor id: HC-7', 'donor id: HC-8', 'donor id: HC-9', 'donor id: HC-10', 'donor id: HC-11', 'donor id: HC-12', 'donor id: HC-13', 'donor id: HC-14', 'donor id: HC-15', 'donor id: HC-16', 'donor id: HC-17', 'donor id: HC-18', 'donor id: HC-19', 'donor id: HC-20', 'donor id: HC-21', 'donor id: HC-22'], 2: ['visit: I-WK0'], 3: [\"diagnosis: Crohn's disease\", 'diagnosis: healthy control'], 4: ['treatment: Ustekinumab 130 mg IV', 'treatment: Ustekinumab 6 mg/kg (520 mg)', 'treatment: Placebo IV', 'treatment: Ustekinumab 6 mg/kg (390 mg)', 'treatment: NA', 'treatment: Ustekinumab 6 mg/kg (260 mg)'], 5: ['inflamed area at week 0: Ileum and colon', 'inflamed area at week 0: Colon only', 'inflamed area at week 0: NA'], 6: ['mucosal healing at week 8: N', 'mucosal healing at week 8: NA', 'mucosal healing at week 8: Y']}\n"
     ]
    }
   ],
   "source": [
    "from tools.preprocess import *\n",
    "# 1. Identify the paths to the SOFT file and the matrix file\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. Read the matrix file to obtain background information and sample characteristics data\n",
    "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
    "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
    "background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
    "\n",
    "# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
    "sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
    "\n",
    "# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
    "print(\"Background Information:\")\n",
    "print(background_info)\n",
    "print(\"Sample Characteristics Dictionary:\")\n",
    "print(sample_characteristics_dict)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "8d858784",
   "metadata": {},
   "source": [
    "### Step 2: Dataset Analysis and Clinical Feature Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "8b35b647",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T08:33:57.720882Z",
     "iopub.status.busy": "2025-03-25T08:33:57.720776Z",
     "iopub.status.idle": "2025-03-25T08:33:57.735229Z",
     "shell.execute_reply": "2025-03-25T08:33:57.734940Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Preview of selected clinical features:\n",
      "{'CNTO1275CRD3002-20554': [1.0], 'CNTO1275CRD3002-20667': [1.0], 'CNTO1275CRD3002-20449': [1.0], 'CNTO1275CRD3002-20927': [1.0], 'CNTO1275CRD3002-20270': [1.0], 'CNTO1275CRD3002-20072': [1.0], 'CNTO1275CRD3002-20109': [1.0], 'CNTO1275CRD3002-20346': [1.0], 'HC-1': [0.0], 'HC-2': [0.0], 'HC-3': [0.0], 'HC-4': [0.0], 'HC-5': [0.0], 'HC-6': [0.0], 'HC-7': [0.0], 'HC-8': [0.0], 'HC-9': [0.0], 'HC-10': [0.0], 'HC-11': [0.0], 'HC-12': [0.0], 'HC-13': [0.0], 'HC-14': [0.0], 'HC-15': [0.0], 'HC-16': [0.0], 'HC-17': [0.0], 'HC-18': [0.0], 'HC-19': [0.0], 'HC-20': [0.0], 'HC-21': [0.0], 'HC-22': [0.0]}\n",
      "Clinical data saved to ../../output/preprocess/Crohns_Disease/clinical_data/GSE207022.csv\n"
     ]
    }
   ],
   "source": [
    "import pandas as pd\n",
    "import os\n",
    "import json\n",
    "from typing import Optional, Callable, Dict, Any\n",
    "\n",
    "# 1. Determine gene expression data availability\n",
    "is_gene_available = True  # This appears to be gene expression data from microarrays\n",
    "\n",
    "# 2. Determine clinical data availability and create conversion functions\n",
    "\n",
    "# 2.1 Identify rows containing relevant clinical data\n",
    "trait_row = 3  # 'diagnosis: Crohn's disease', 'diagnosis: healthy control'\n",
    "age_row = None  # Age is not available in the sample characteristics\n",
    "gender_row = None  # Gender is not available in the sample characteristics\n",
    "\n",
    "# 2.2 Create conversion functions for clinical variables\n",
    "\n",
    "def convert_trait(val: str) -> int:\n",
    "    \"\"\"Convert Crohn's disease status to binary.\"\"\"\n",
    "    if val is None:\n",
    "        return None\n",
    "    if ':' in val:\n",
    "        val = val.split(':', 1)[1].strip().lower()\n",
    "    else:\n",
    "        val = val.strip().lower()\n",
    "    \n",
    "    if \"crohn\" in val:\n",
    "        return 1  # Has Crohn's disease\n",
    "    elif \"healthy\" in val or \"control\" in val:\n",
    "        return 0  # Healthy control\n",
    "    return None\n",
    "\n",
    "def convert_age(val: str) -> Optional[float]:\n",
    "    \"\"\"Convert age to continuous value.\"\"\"\n",
    "    # Not used since age data is not available\n",
    "    return None\n",
    "\n",
    "def convert_gender(val: str) -> Optional[int]:\n",
    "    \"\"\"Convert gender to binary (0 for female, 1 for male).\"\"\"\n",
    "    # Not used since gender data is not available\n",
    "    return None\n",
    "\n",
    "# 3. Save initial metadata about dataset usability\n",
    "is_trait_available = trait_row is not None\n",
    "validate_and_save_cohort_info(\n",
    "    is_final=False,\n",
    "    cohort=cohort,\n",
    "    info_path=json_path,\n",
    "    is_gene_available=is_gene_available,\n",
    "    is_trait_available=is_trait_available\n",
    ")\n",
    "\n",
    "# 4. Extract clinical features if trait data is available\n",
    "if trait_row is not None:\n",
    "    # Create the clinical data DataFrame from the sample characteristics dictionary\n",
    "    # Based on the previous output, we have samples in columns and characteristics in rows\n",
    "    sample_characteristics = {\n",
    "        0: ['tissue: rectum'], \n",
    "        1: ['donor id: CNTO1275CRD3002-20554', 'donor id: CNTO1275CRD3002-20667', 'donor id: CNTO1275CRD3002-20449', \n",
    "            'donor id: CNTO1275CRD3002-20927', 'donor id: CNTO1275CRD3002-20270', 'donor id: CNTO1275CRD3002-20072', \n",
    "            'donor id: CNTO1275CRD3002-20109', 'donor id: CNTO1275CRD3002-20346', 'donor id: HC-1', 'donor id: HC-2', \n",
    "            'donor id: HC-3', 'donor id: HC-4', 'donor id: HC-5', 'donor id: HC-6', 'donor id: HC-7', 'donor id: HC-8', \n",
    "            'donor id: HC-9', 'donor id: HC-10', 'donor id: HC-11', 'donor id: HC-12', 'donor id: HC-13', 'donor id: HC-14', \n",
    "            'donor id: HC-15', 'donor id: HC-16', 'donor id: HC-17', 'donor id: HC-18', 'donor id: HC-19', 'donor id: HC-20', \n",
    "            'donor id: HC-21', 'donor id: HC-22'], \n",
    "        2: ['visit: I-WK0'], \n",
    "        3: [\"diagnosis: Crohn's disease\", 'diagnosis: healthy control'], \n",
    "        4: ['treatment: Ustekinumab 130 mg IV', 'treatment: Ustekinumab 6 mg/kg (520 mg)', 'treatment: Placebo IV', \n",
    "            'treatment: Ustekinumab 6 mg/kg (390 mg)', 'treatment: NA', 'treatment: Ustekinumab 6 mg/kg (260 mg)'], \n",
    "        5: ['inflamed area at week 0: Ileum and colon', 'inflamed area at week 0: Colon only', 'inflamed area at week 0: NA'], \n",
    "        6: ['mucosal healing at week 8: N', 'mucosal healing at week 8: NA', 'mucosal healing at week 8: Y']\n",
    "    }\n",
    "    \n",
    "    # Let's convert this dictionary to a DataFrame that can be used with geo_select_clinical_features\n",
    "    # The function expects rows as sample characteristics and columns as samples\n",
    "    \n",
    "    # Create a list of sample IDs from the donor id row (row 1)\n",
    "    sample_ids = []\n",
    "    for donor_id in sample_characteristics[1]:\n",
    "        if ':' in donor_id:\n",
    "            sample_id = donor_id.split(':', 1)[1].strip()\n",
    "            sample_ids.append(sample_id)\n",
    "    \n",
    "    # Initialize a DataFrame with characteristics as rows and samples as columns\n",
    "    clinical_data = pd.DataFrame(index=range(len(sample_characteristics)), columns=sample_ids)\n",
    "    \n",
    "    # Fill the DataFrame with characteristic values\n",
    "    for row_idx, values in sample_characteristics.items():\n",
    "        # Handle the case where one row has multiple values (different for different samples)\n",
    "        if len(values) == 1:\n",
    "            # Same value for all samples\n",
    "            for col in clinical_data.columns:\n",
    "                clinical_data.iloc[row_idx, clinical_data.columns.get_loc(col)] = values[0]\n",
    "        else:\n",
    "            # Different values for different samples or less values than samples\n",
    "            # For diagnosis (row 3), we need to infer values from donor IDs\n",
    "            if row_idx == 3:  # Diagnosis row\n",
    "                for col_idx, col in enumerate(clinical_data.columns):\n",
    "                    if 'HC-' in col:  # Healthy control\n",
    "                        clinical_data.iloc[row_idx, col_idx] = 'diagnosis: healthy control'\n",
    "                    else:  # Crohn's disease\n",
    "                        clinical_data.iloc[row_idx, col_idx] = \"diagnosis: Crohn's disease\"\n",
    "            else:\n",
    "                # For other rows, we'll set to None as we don't have enough information to map\n",
    "                for col_idx, col in enumerate(clinical_data.columns):\n",
    "                    clinical_data.iloc[row_idx, col_idx] = None\n",
    "    \n",
    "    # Extract clinical features\n",
    "    selected_clinical = geo_select_clinical_features(\n",
    "        clinical_df=clinical_data,\n",
    "        trait=trait,\n",
    "        trait_row=trait_row,\n",
    "        convert_trait=convert_trait,\n",
    "        age_row=age_row,\n",
    "        convert_age=convert_age,\n",
    "        gender_row=gender_row,\n",
    "        convert_gender=convert_gender\n",
    "    )\n",
    "    \n",
    "    # Preview the extracted clinical features\n",
    "    preview = preview_df(selected_clinical)\n",
    "    print(\"Preview of selected clinical features:\")\n",
    "    print(preview)\n",
    "    \n",
    "    # Save the clinical data\n",
    "    os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "    selected_clinical.to_csv(out_clinical_data_file)\n",
    "    print(f\"Clinical data saved to {out_clinical_data_file}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "24cf5a7b",
   "metadata": {},
   "source": [
    "### Step 3: Gene Data Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "55da15c9",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T08:33:57.736353Z",
     "iopub.status.busy": "2025-03-25T08:33:57.736247Z",
     "iopub.status.idle": "2025-03-25T08:33:58.128283Z",
     "shell.execute_reply": "2025-03-25T08:33:58.127909Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "First 20 gene/probe identifiers:\n",
      "Index(['1007_PM_s_at', '1053_PM_at', '117_PM_at', '121_PM_at', '1255_PM_g_at',\n",
      "       '1294_PM_at', '1316_PM_at', '1320_PM_at', '1405_PM_i_at', '1431_PM_at',\n",
      "       '1438_PM_at', '1487_PM_at', '1494_PM_f_at', '1552256_PM_a_at',\n",
      "       '1552257_PM_a_at', '1552258_PM_at', '1552261_PM_at', '1552263_PM_at',\n",
      "       '1552264_PM_a_at', '1552266_PM_at'],\n",
      "      dtype='object', name='ID')\n",
      "\n",
      "Gene data dimensions: 54715 genes × 148 samples\n"
     ]
    }
   ],
   "source": [
    "# 1. Re-identify the SOFT and matrix files to ensure we have the correct paths\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. Extract the gene expression data from the matrix file\n",
    "gene_data = get_genetic_data(matrix_file)\n",
    "\n",
    "# 3. Print the first 20 row IDs (gene or probe identifiers)\n",
    "print(\"\\nFirst 20 gene/probe identifiers:\")\n",
    "print(gene_data.index[:20])\n",
    "\n",
    "# 4. Print the dimensions of the gene expression data\n",
    "print(f\"\\nGene data dimensions: {gene_data.shape[0]} genes × {gene_data.shape[1]} samples\")\n",
    "\n",
    "# Note: we keep is_gene_available as True since we successfully extracted gene expression data\n",
    "is_gene_available = True\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "fdecb4fe",
   "metadata": {},
   "source": [
    "### Step 4: Gene Identifier Review"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "5762dbd0",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T08:33:58.129510Z",
     "iopub.status.busy": "2025-03-25T08:33:58.129392Z",
     "iopub.status.idle": "2025-03-25T08:33:58.131254Z",
     "shell.execute_reply": "2025-03-25T08:33:58.130975Z"
    }
   },
   "outputs": [],
   "source": [
    "# Looking at the identifiers: '1007_PM_s_at', '1053_PM_at', etc.\n",
    "# These are Affymetrix probe IDs from a microarray platform, not human gene symbols\n",
    "# They need to be mapped to standard gene symbols for analysis\n",
    "\n",
    "requires_gene_mapping = True\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "ec50cac0",
   "metadata": {},
   "source": [
    "### Step 5: Gene Annotation"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "bbe63921",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T08:33:58.132321Z",
     "iopub.status.busy": "2025-03-25T08:33:58.132220Z",
     "iopub.status.idle": "2025-03-25T08:34:07.025674Z",
     "shell.execute_reply": "2025-03-25T08:34:07.025341Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Gene annotation preview:\n",
      "{'ID': ['1007_PM_s_at', '1053_PM_at', '117_PM_at', '121_PM_at', '1255_PM_g_at'], 'GB_ACC': ['U48705', 'M87338', 'X51757', 'X69699', 'L36861'], 'SPOT_ID': [nan, nan, nan, nan, nan], 'Species Scientific Name': ['Homo sapiens', 'Homo sapiens', 'Homo sapiens', 'Homo sapiens', 'Homo sapiens'], 'Annotation Date': ['Aug 20, 2010', 'Aug 20, 2010', 'Aug 20, 2010', 'Aug 20, 2010', 'Aug 20, 2010'], 'Sequence Type': ['Exemplar sequence', 'Exemplar sequence', 'Exemplar sequence', 'Exemplar sequence', 'Exemplar sequence'], 'Sequence Source': ['Affymetrix Proprietary Database', 'GenBank', 'Affymetrix Proprietary Database', 'GenBank', 'Affymetrix Proprietary Database'], 'Target Description': ['U48705 /FEATURE=mRNA /DEFINITION=HSU48705 Human receptor tyrosine kinase DDR gene, complete cds', 'M87338 /FEATURE= /DEFINITION=HUMA1SBU Human replication factor C, 40-kDa subunit (A1) mRNA, complete cds', \"X51757 /FEATURE=cds /DEFINITION=HSP70B Human heat-shock protein HSP70B' gene\", 'X69699 /FEATURE= /DEFINITION=HSPAX8A H.sapiens Pax8 mRNA', 'L36861 /FEATURE=expanded_cds /DEFINITION=HUMGCAPB Homo sapiens guanylate cyclase activating protein (GCAP) gene exons 1-4, complete cds'], 'Representative Public ID': ['U48705', 'M87338', 'X51757', 'X69699', 'L36861'], 'Gene Title': ['discoidin domain receptor tyrosine kinase 1', 'replication factor C (activator 1) 2, 40kDa', \"heat shock 70kDa protein 6 (HSP70B')\", 'paired box 8', 'guanylate cyclase activator 1A (retina)'], 'Gene Symbol': ['DDR1', 'RFC2', 'HSPA6', 'PAX8', 'GUCA1A'], 'ENTREZ_GENE_ID': ['780', '5982', '3310', '7849', '2978'], 'RefSeq Transcript ID': ['NM_001954 /// NM_013993 /// NM_013994', 'NM_002914 /// NM_181471', 'NM_002155', 'NM_003466 /// NM_013951 /// NM_013952 /// NM_013953 /// NM_013992', 'NM_000409'], 'Gene Ontology Biological Process': ['0001558 // regulation of cell growth // inferred from electronic annotation /// 0001952 // regulation of cell-matrix adhesion // inferred from electronic annotation /// 0006468 // protein amino acid phosphorylation // inferred from electronic annotation /// 0007155 // cell adhesion // inferred from electronic annotation /// 0007155 // cell adhesion // traceable author statement /// 0007169 // transmembrane receptor protein tyrosine kinase signaling pathway // inferred from electronic annotation /// 0007566 // embryo implantation // inferred from electronic annotation /// 0008285 // negative regulation of cell proliferation // inferred from electronic annotation /// 0018108 // peptidyl-tyrosine phosphorylation // inferred from electronic annotation /// 0031100 // organ regeneration // inferred from electronic annotation /// 0043583 // ear development // inferred from electronic annotation /// 0043588 // skin development // inferred from electronic annotation /// 0051789 // response to protein stimulus // inferred from electronic annotation /// 0060444 // branching involved in mammary gland duct morphogenesis // inferred from electronic annotation /// 0060749 // mammary gland alveolus development // inferred from electronic annotation', '0006260 // DNA replication // not recorded /// 0006260 // DNA replication // inferred from electronic annotation /// 0006297 // nucleotide-excision repair, DNA gap filling // not recorded /// 0015979 // photosynthesis // inferred from electronic annotation /// 0015995 // chlorophyll biosynthetic process // inferred from electronic annotation', '0006950 // response to stress // inferred from electronic annotation /// 0006986 // response to unfolded protein // traceable author statement', '0001656 // metanephros development // inferred from electronic annotation /// 0006350 // transcription // inferred from electronic annotation /// 0007275 // multicellular organismal development // inferred from electronic annotation /// 0009653 // anatomical structure morphogenesis // traceable author statement /// 0030154 // cell differentiation // inferred from electronic annotation /// 0030878 // thyroid gland development // inferred from electronic annotation /// 0045449 // regulation of transcription // inferred from electronic annotation /// 0045893 // positive regulation of transcription, DNA-dependent // inferred from sequence or structural similarity /// 0045893 // positive regulation of transcription, DNA-dependent // inferred from direct assay /// 0045944 // positive regulation of transcription from RNA polymerase II promoter // inferred from electronic annotation', '0007165 // signal transduction // non-traceable author statement /// 0007601 // visual perception // inferred from electronic annotation /// 0007601 // visual perception // traceable author statement /// 0007602 // phototransduction // inferred from electronic annotation /// 0031282 // regulation of guanylate cyclase activity // inferred from electronic annotation /// 0050896 // response to stimulus // inferred from electronic annotation'], 'Gene Ontology Cellular Component': ['0005576 // extracellular region // inferred from electronic annotation /// 0005886 // plasma membrane // inferred from electronic annotation /// 0005887 // integral to plasma membrane // traceable author statement /// 0016020 // membrane // inferred from electronic annotation /// 0016021 // integral to membrane // inferred from electronic annotation /// 0016323 // basolateral plasma membrane // inferred from electronic annotation', '0005634 // nucleus // inferred from electronic annotation /// 0005654 // nucleoplasm // not recorded /// 0005663 // DNA replication factor C complex // inferred from direct assay /// 0005663 // DNA replication factor C complex // inferred from electronic annotation', nan, '0005634 // nucleus // inferred from electronic annotation /// 0005654 // nucleoplasm // inferred from sequence or structural similarity /// 0005654 // nucleoplasm // inferred from electronic annotation', '0016020 // membrane // inferred from electronic annotation'], 'Gene Ontology Molecular Function': ['0000166 // nucleotide binding // inferred from electronic annotation /// 0004672 // protein kinase activity // inferred from electronic annotation /// 0004713 // protein tyrosine kinase activity // inferred from electronic annotation /// 0004714 // transmembrane receptor protein tyrosine kinase activity // inferred from electronic annotation /// 0004714 // transmembrane receptor protein tyrosine kinase activity // traceable author statement /// 0004872 // receptor activity // inferred from electronic annotation /// 0005515 // protein binding // inferred from physical interaction /// 0005515 // protein binding // inferred from electronic annotation /// 0005524 // ATP binding // inferred from electronic annotation /// 0016301 // kinase activity // inferred from electronic annotation /// 0016740 // transferase activity // inferred from electronic annotation', '0000166 // nucleotide binding // inferred from electronic annotation /// 0003677 // DNA binding // inferred from electronic annotation /// 0003689 // DNA clamp loader activity // inferred from electronic annotation /// 0005515 // protein binding // inferred from physical interaction /// 0005524 // ATP binding // inferred from electronic annotation /// 0005524 // ATP binding // traceable author statement /// 0016851 // magnesium chelatase activity // inferred from electronic annotation /// 0017111 // nucleoside-triphosphatase activity // inferred from electronic annotation', '0000166 // nucleotide binding // inferred from electronic annotation /// 0005524 // ATP binding // inferred from electronic annotation', '0003677 // DNA binding // inferred from direct assay /// 0003677 // DNA binding // inferred from electronic annotation /// 0003700 // transcription factor activity // traceable author statement /// 0004996 // thyroid-stimulating hormone receptor activity // traceable author statement /// 0005515 // protein binding // inferred from sequence or structural similarity /// 0005515 // protein binding // inferred from electronic annotation /// 0005515 // protein binding // inferred from physical interaction /// 0016563 // transcription activator activity // inferred from sequence or structural similarity /// 0016563 // transcription activator activity // inferred from direct assay /// 0016563 // transcription activator activity // inferred from electronic annotation /// 0043565 // sequence-specific DNA binding // inferred from electronic annotation', '0005509 // calcium ion binding // inferred from electronic annotation /// 0008048 // calcium sensitive guanylate cyclase activator activity // traceable author statement /// 0008048 // calcium sensitive guanylate cyclase activator activity // inferred from electronic annotation /// 0030249 // guanylate cyclase regulator activity // inferred from electronic annotation']}\n"
     ]
    }
   ],
   "source": [
    "# 1. First get the file paths using geo_get_relevant_filepaths function\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.\n",
    "gene_annotation = get_gene_annotation(soft_file)\n",
    "\n",
    "# 3. Use the 'preview_df' function from the library to preview the data and print out the results.\n",
    "print(\"Gene annotation preview:\")\n",
    "print(preview_df(gene_annotation))\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "1598ccdc",
   "metadata": {},
   "source": [
    "### Step 6: Gene Identifier Mapping"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "77cfe9de",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T08:34:07.026996Z",
     "iopub.status.busy": "2025-03-25T08:34:07.026878Z",
     "iopub.status.idle": "2025-03-25T08:34:07.597872Z",
     "shell.execute_reply": "2025-03-25T08:34:07.597547Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Original probe data shape: 18989 probes × 148 samples\n",
      "Mapped gene data shape: 18989 genes × 148 samples\n",
      "\n",
      "First 10 gene symbols after mapping:\n",
      "Index(['A1BG', 'A1CF', 'A2BP1', 'A2LD1', 'A2M', 'A2ML1', 'A4GALT', 'A4GNT',\n",
      "       'AAA1', 'AAAS'],\n",
      "      dtype='object', name='Gene')\n",
      "\n",
      "Preview of gene expression data after mapping:\n",
      "{'GSM6268367': [2.71, 6.53, 12.6, 6.15, 14.239999999999998], 'GSM6268368': [2.99, 8.16, 12.69, 6.15, 13.29], 'GSM6268369': [3.27, 6.86, 12.58, 7.17, 14.47], 'GSM6268370': [2.81, 8.51, 13.43, 6.57, 12.69], 'GSM6268371': [2.65, 8.66, 14.03, 6.19, 13.02], 'GSM6268372': [2.63, 7.27, 12.760000000000002, 6.52, 13.45], 'GSM6268373': [2.73, 8.3, 13.530000000000001, 6.13, 13.530000000000001], 'GSM6268374': [2.74, 8.21, 13.59, 6.619999999999999, 13.52], 'GSM6268375': [2.91, 7.81, 13.21, 6.03, 13.809999999999999], 'GSM6268376': [2.74, 8.43, 14.37, 6.51, 13.33], 'GSM6268377': [2.65, 8.33, 13.76, 6.779999999999999, 12.84], 'GSM6268378': [2.6, 8.3, 15.07, 6.8, 12.850000000000001], 'GSM6268379': [2.83, 8.06, 13.290000000000001, 6.46, 13.68], 'GSM6268380': [2.68, 8.12, 12.83, 7.4, 13.8], 'GSM6268381': [2.94, 8.49, 14.209999999999999, 6.75, 12.48], 'GSM6268382': [2.7, 8.4, 13.98, 6.220000000000001, 13.120000000000001], 'GSM6268383': [2.97, 7.87, 13.620000000000001, 6.2, 13.84], 'GSM6268384': [2.74, 8.27, 14.34, 6.41, 12.91], 'GSM6268385': [2.74, 8.08, 13.17, 6.47, 13.780000000000001], 'GSM6268386': [2.8, 8.25, 13.32, 6.55, 12.83], 'GSM6268387': [2.67, 8.16, 13.83, 6.57, 12.440000000000001], 'GSM6268388': [2.89, 8.4, 13.12, 6.42, 13.79], 'GSM6268389': [2.91, 8.09, 13.23, 6.800000000000001, 13.740000000000002], 'GSM6268390': [2.9, 7.57, 13.55, 6.62, 14.2], 'GSM6268391': [2.87, 7.78, 13.71, 6.66, 13.99], 'GSM6268392': [2.9, 8.16, 12.36, 6.220000000000001, 14.23], 'GSM6268393': [2.45, 8.24, 14.059999999999999, 6.4399999999999995, 14.05], 'GSM6268394': [2.81, 8.51, 13.129999999999999, 6.77, 12.94], 'GSM6268395': [3.03, 8.0, 14.52, 6.75, 13.68], 'GSM6268396': [3.05, 8.14, 13.48, 6.5600000000000005, 13.73], 'GSM6268397': [2.97, 7.79, 14.03, 6.57, 13.73], 'GSM6268398': [2.53, 8.01, 13.73, 6.12, 12.93], 'GSM6268399': [2.94, 8.1, 13.19, 7.1899999999999995, 13.42], 'GSM6268400': [2.68, 7.64, 12.8, 7.01, 13.73], 'GSM6268401': [3.21, 7.99, 13.28, 6.83, 12.850000000000001], 'GSM6268402': [2.82, 7.71, 12.8, 7.37, 13.350000000000001], 'GSM6268403': [2.8, 7.44, 12.870000000000001, 6.49, 14.829999999999998], 'GSM6268404': [2.72, 7.67, 13.84, 6.18, 13.24], 'GSM6268405': [2.61, 8.64, 13.54, 6.45, 12.370000000000001], 'GSM6268406': [3.03, 7.98, 13.27, 6.46, 12.41], 'GSM6268407': [3.21, 8.42, 12.64, 6.67, 13.09], 'GSM6268408': [3.28, 8.7, 12.83, 6.27, 12.959999999999999], 'GSM6268409': [2.8, 7.58, 12.1, 6.6, 14.27], 'GSM6268410': [2.63, 7.38, 13.05, 6.869999999999999, 14.73], 'GSM6268411': [3.06, 6.91, 12.57, 6.74, 13.94], 'GSM6268412': [2.96, 5.02, 12.56, 5.88, 14.68], 'GSM6268413': [3.09, 7.74, 13.56, 6.61, 12.57], 'GSM6268414': [2.65, 8.06, 12.879999999999999, 6.3100000000000005, 13.82], 'GSM6268415': [2.71, 8.29, 13.51, 7.369999999999999, 12.669999999999998], 'GSM6268416': [2.89, 7.45, 14.09, 6.21, 14.25], 'GSM6268417': [2.96, 8.46, 12.58, 6.390000000000001, 13.36], 'GSM6268418': [2.81, 8.29, 12.91, 6.5600000000000005, 13.18], 'GSM6268419': [2.65, 6.16, 12.49, 6.380000000000001, 13.030000000000001], 'GSM6268420': [3.15, 7.91, 13.620000000000001, 6.54, 13.47], 'GSM6268421': [2.7, 7.97, 14.31, 6.390000000000001, 12.57], 'GSM6268422': [2.84, 6.57, 12.93, 6.390000000000001, 14.169999999999998], 'GSM6268423': [2.83, 7.66, 15.92, 6.18, 12.77], 'GSM6268424': [2.59, 7.83, 13.629999999999999, 6.800000000000001, 13.1], 'GSM6268425': [2.62, 7.74, 13.440000000000001, 6.92, 12.95], 'GSM6268426': [2.75, 8.56, 12.97, 7.1, 11.940000000000001], 'GSM6268427': [2.86, 7.86, 13.25, 7.07, 13.07], 'GSM6268428': [2.82, 6.98, 13.649999999999999, 6.17, 13.29], 'GSM6268429': [3.02, 7.75, 13.47, 7.16, 13.2], 'GSM6268430': [2.99, 6.42, 12.55, 5.91, 14.71], 'GSM6268431': [2.68, 7.97, 14.05, 6.45, 13.13], 'GSM6268432': [2.9, 3.65, 13.09, 6.25, 11.05], 'GSM6268433': [2.69, 6.51, 12.73, 6.54, 13.41], 'GSM6268434': [2.88, 8.72, 13.08, 6.5600000000000005, 13.120000000000001], 'GSM6268435': [2.66, 8.07, 12.42, 6.72, 13.62], 'GSM6268436': [3.04, 8.48, 14.29, 6.34, 12.07], 'GSM6268437': [3.1, 5.77, 12.74, 6.3, 14.27], 'GSM6268438': [2.66, 8.31, 13.24, 6.59, 11.8], 'GSM6268439': [2.69, 8.58, 13.32, 5.88, 13.64], 'GSM6268440': [3.05, 7.88, 13.81, 6.470000000000001, 13.57], 'GSM6268441': [2.79, 7.45, 13.21, 6.390000000000001, 13.170000000000002], 'GSM6268442': [2.59, 7.91, 13.57, 6.41, 13.18], 'GSM6268443': [2.91, 3.8, 12.629999999999999, 6.4, 14.53], 'GSM6268444': [3.52, 8.23, 13.43, 6.78, 13.629999999999999], 'GSM6268445': [2.63, 8.27, 14.0, 6.24, 12.459999999999999], 'GSM6268446': [3.06, 8.2, 14.1, 6.630000000000001, 13.55], 'GSM6268447': [2.86, 8.03, 12.979999999999999, 6.779999999999999, 13.84], 'GSM6268448': [2.76, 7.38, 13.15, 6.279999999999999, 13.96], 'GSM6268449': [2.9, 8.01, 13.72, 6.01, 12.09], 'GSM6268450': [2.82, 7.69, 13.6, 6.43, 13.3], 'GSM6268451': [2.82, 7.26, 13.05, 6.66, 13.420000000000002], 'GSM6268452': [3.13, 7.68, 13.75, 6.0, 13.459999999999999], 'GSM6268453': [2.75, 7.81, 13.459999999999999, 6.45, 13.370000000000001], 'GSM6268454': [2.84, 7.35, 13.45, 6.609999999999999, 14.88], 'GSM6268455': [2.73, 7.83, 13.28, 5.890000000000001, 13.12], 'GSM6268456': [2.76, 7.26, 12.3, 6.75, 14.44], 'GSM6268457': [3.32, 7.47, 13.450000000000001, 7.33, 14.46], 'GSM6268458': [2.95, 8.37, 12.5, 6.470000000000001, 12.89], 'GSM6268459': [2.99, 8.55, 13.54, 6.220000000000001, 13.379999999999999], 'GSM6268460': [2.68, 7.9, 14.07, 6.87, 12.260000000000002], 'GSM6268461': [2.86, 7.47, 13.190000000000001, 6.5, 13.99], 'GSM6268462': [2.7, 7.25, 12.99, 6.529999999999999, 12.95], 'GSM6268463': [2.82, 8.24, 13.549999999999999, 6.17, 13.82], 'GSM6268464': [2.65, 8.64, 12.64, 6.39, 12.84], 'GSM6268465': [2.63, 7.74, 13.6, 6.470000000000001, 13.7], 'GSM6268466': [2.78, 8.22, 13.74, 6.26, 13.68], 'GSM6268467': [2.72, 8.45, 12.940000000000001, 6.3, 13.469999999999999], 'GSM6268468': [2.82, 7.63, 13.39, 6.59, 13.190000000000001], 'GSM6268469': [2.91, 7.89, 12.870000000000001, 6.199999999999999, 12.01], 'GSM6268470': [2.96, 7.04, 12.78, 6.54, 13.48], 'GSM6268471': [2.95, 8.31, 12.700000000000001, 6.52, 12.850000000000001], 'GSM6268472': [3.05, 5.96, 12.48, 6.42, 14.13], 'GSM6268473': [2.69, 7.73, 13.14, 6.73, 14.35], 'GSM6268474': [2.67, 7.72, 13.219999999999999, 6.67, 13.469999999999999], 'GSM6268475': [2.89, 8.18, 15.41, 7.279999999999999, 12.04], 'GSM6268476': [2.85, 7.82, 13.01, 6.0, 14.33], 'GSM6268477': [3.18, 7.96, 14.59, 6.41, 13.35], 'GSM6268478': [2.8, 7.73, 13.3, 6.34, 13.83], 'GSM6268479': [2.67, 8.03, 12.93, 6.45, 13.32], 'GSM6268480': [2.96, 8.3, 13.68, 6.75, 13.0], 'GSM6268481': [2.67, 8.57, 13.74, 6.6899999999999995, 13.0], 'GSM6268482': [2.67, 8.35, 13.41, 5.85, 13.57], 'GSM6268483': [2.87, 6.76, 12.53, 6.0, 14.39], 'GSM6268484': [2.79, 7.2, 12.63, 6.67, 13.8], 'GSM6268485': [2.93, 8.39, 12.66, 6.22, 13.2], 'GSM6268486': [2.83, 8.27, 12.62, 6.369999999999999, 13.509999999999998], 'GSM6268487': [2.87, 7.13, 13.23, 6.279999999999999, 13.75], 'GSM6268488': [2.71, 8.23, 14.3, 6.789999999999999, 10.920000000000002], 'GSM6268489': [2.71, 7.88, 13.540000000000001, 6.8, 13.42], 'GSM6268490': [2.52, 8.52, 13.100000000000001, 6.85, 13.290000000000001], 'GSM6268491': [2.7, 8.16, 13.43, 5.91, 13.02], 'GSM6268492': [3.03, 7.76, 14.18, 7.24, 14.29], 'GSM6268493': [2.73, 8.11, 13.38, 6.43, 12.18], 'GSM6268494': [3.01, 6.74, 14.459999999999999, 6.63, 13.330000000000002], 'GSM6268495': [2.99, 8.2, 13.18, 6.32, 13.43], 'GSM6268496': [2.71, 8.72, 13.47, 6.54, 12.59], 'GSM6268497': [2.72, 7.4, 13.17, 6.86, 14.06], 'GSM6268498': [2.66, 7.93, 13.39, 6.66, 13.26], 'GSM6268499': [3.0, 7.56, 12.57, 6.97, 13.86], 'GSM6268500': [2.68, 7.34, 13.79, 6.74, 12.98], 'GSM6268501': [2.96, 8.11, 12.66, 6.37, 13.469999999999999], 'GSM6268502': [2.62, 7.96, 13.219999999999999, 6.42, 13.129999999999999], 'GSM6268503': [3.15, 7.0, 12.77, 6.21, 14.77], 'GSM6268504': [3.15, 8.07, 14.370000000000001, 6.24, 13.08], 'GSM6268505': [2.74, 8.12, 13.100000000000001, 6.32, 13.79], 'GSM6268506': [2.92, 7.86, 13.4, 6.300000000000001, 12.94], 'GSM6268507': [2.94, 6.79, 12.97, 6.75, 14.0], 'GSM6268508': [2.94, 8.18, 14.0, 6.44, 13.82], 'GSM6268509': [2.82, 7.98, 13.56, 6.720000000000001, 13.23], 'GSM6268510': [2.89, 7.84, 13.16, 6.6899999999999995, 13.68], 'GSM6268511': [2.73, 8.45, 13.7, 6.29, 12.86], 'GSM6268512': [2.74, 8.19, 13.120000000000001, 6.9399999999999995, 12.370000000000001], 'GSM6268513': [2.93, 6.18, 13.03, 5.98, 15.200000000000001], 'GSM6268514': [2.84, 8.4, 12.61, 6.4, 11.92]}\n"
     ]
    }
   ],
   "source": [
    "# 1. Observe gene identifiers in gene expression data and annotation data\n",
    "# From previous steps we see:\n",
    "# - Gene expression data has identifiers like '1007_PM_s_at' in the index\n",
    "# - Gene annotation data has 'ID' column with the same format identifiers\n",
    "# - Gene symbols are stored in the 'Gene Symbol' column in the annotation data\n",
    "\n",
    "# 2. Extract gene mapping from annotation dataframe\n",
    "mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Gene Symbol')\n",
    "\n",
    "# 3. Convert probe-level measurements to gene-level expression data\n",
    "gene_data = apply_gene_mapping(gene_data, mapping_df)\n",
    "\n",
    "# Print out information about the mapping process\n",
    "print(f\"Original probe data shape: {gene_data.shape[0]} probes × {gene_data.shape[1]} samples\")\n",
    "print(f\"Mapped gene data shape: {gene_data.shape[0]} genes × {gene_data.shape[1]} samples\")\n",
    "print(\"\\nFirst 10 gene symbols after mapping:\")\n",
    "print(gene_data.index[:10])\n",
    "\n",
    "# Verify first few rows of the mapped gene data\n",
    "print(\"\\nPreview of gene expression data after mapping:\")\n",
    "print(preview_df(gene_data))\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "50b9c720",
   "metadata": {},
   "source": [
    "### Step 7: Data Normalization and Linking"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "4b61ac1f",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T08:34:07.599244Z",
     "iopub.status.busy": "2025-03-25T08:34:07.599136Z",
     "iopub.status.idle": "2025-03-25T08:34:22.495251Z",
     "shell.execute_reply": "2025-03-25T08:34:22.494868Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Normalizing gene symbols...\n",
      "Gene data shape after normalization: 18622 genes × 148 samples\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Normalized gene expression data saved to ../../output/preprocess/Crohns_Disease/gene_data/GSE207022.csv\n",
      "Loading clinical features...\n",
      "Clinical features shape: (1, 30)\n",
      "Clinical features preview:\n",
      "{'CNTO1275CRD3002-20554': [1.0], 'CNTO1275CRD3002-20667': [1.0], 'CNTO1275CRD3002-20449': [1.0], 'CNTO1275CRD3002-20927': [1.0], 'CNTO1275CRD3002-20270': [1.0], 'CNTO1275CRD3002-20072': [1.0], 'CNTO1275CRD3002-20109': [1.0], 'CNTO1275CRD3002-20346': [1.0], 'HC-1': [0.0], 'HC-2': [0.0], 'HC-3': [0.0], 'HC-4': [0.0], 'HC-5': [0.0], 'HC-6': [0.0], 'HC-7': [0.0], 'HC-8': [0.0], 'HC-9': [0.0], 'HC-10': [0.0], 'HC-11': [0.0], 'HC-12': [0.0], 'HC-13': [0.0], 'HC-14': [0.0], 'HC-15': [0.0], 'HC-16': [0.0], 'HC-17': [0.0], 'HC-18': [0.0], 'HC-19': [0.0], 'HC-20': [0.0], 'HC-21': [0.0], 'HC-22': [0.0]}\n",
      "\n",
      "Gene data columns (first 5): ['GSM6268367', 'GSM6268368', 'GSM6268369', 'GSM6268370', 'GSM6268371']\n",
      "Clinical data rows: ['Crohns_Disease']\n",
      "Re-extracting clinical data from the original source...\n",
      "Re-extracted clinical features preview:\n",
      "{'GSM6268367': [1.0], 'GSM6268368': [1.0], 'GSM6268369': [1.0], 'GSM6268370': [1.0], 'GSM6268371': [1.0], 'GSM6268372': [1.0], 'GSM6268373': [1.0], 'GSM6268374': [1.0], 'GSM6268375': [0.0], 'GSM6268376': [0.0], 'GSM6268377': [0.0], 'GSM6268378': [0.0], 'GSM6268379': [0.0], 'GSM6268380': [0.0], 'GSM6268381': [0.0], 'GSM6268382': [0.0], 'GSM6268383': [0.0], 'GSM6268384': [0.0], 'GSM6268385': [0.0], 'GSM6268386': [0.0], 'GSM6268387': [0.0], 'GSM6268388': [0.0], 'GSM6268389': [0.0], 'GSM6268390': [0.0], 'GSM6268391': [0.0], 'GSM6268392': [0.0], 'GSM6268393': [0.0], 'GSM6268394': [0.0], 'GSM6268395': [0.0], 'GSM6268396': [0.0], 'GSM6268397': [0.0], 'GSM6268398': [1.0], 'GSM6268399': [1.0], 'GSM6268400': [1.0], 'GSM6268401': [1.0], 'GSM6268402': [1.0], 'GSM6268403': [1.0], 'GSM6268404': [1.0], 'GSM6268405': [1.0], 'GSM6268406': [1.0], 'GSM6268407': [1.0], 'GSM6268408': [1.0], 'GSM6268409': [1.0], 'GSM6268410': [1.0], 'GSM6268411': [1.0], 'GSM6268412': [1.0], 'GSM6268413': [1.0], 'GSM6268414': [1.0], 'GSM6268415': [1.0], 'GSM6268416': [1.0], 'GSM6268417': [1.0], 'GSM6268418': [1.0], 'GSM6268419': [1.0], 'GSM6268420': [1.0], 'GSM6268421': [1.0], 'GSM6268422': [1.0], 'GSM6268423': [1.0], 'GSM6268424': [1.0], 'GSM6268425': [1.0], 'GSM6268426': [1.0], 'GSM6268427': [1.0], 'GSM6268428': [1.0], 'GSM6268429': [1.0], 'GSM6268430': [1.0], 'GSM6268431': [1.0], 'GSM6268432': [1.0], 'GSM6268433': [1.0], 'GSM6268434': [1.0], 'GSM6268435': [1.0], 'GSM6268436': [1.0], 'GSM6268437': [1.0], 'GSM6268438': [1.0], 'GSM6268439': [1.0], 'GSM6268440': [1.0], 'GSM6268441': [1.0], 'GSM6268442': [1.0], 'GSM6268443': [1.0], 'GSM6268444': [1.0], 'GSM6268445': [1.0], 'GSM6268446': [1.0], 'GSM6268447': [1.0], 'GSM6268448': [1.0], 'GSM6268449': [1.0], 'GSM6268450': [1.0], 'GSM6268451': [1.0], 'GSM6268452': [1.0], 'GSM6268453': [1.0], 'GSM6268454': [1.0], 'GSM6268455': [1.0], 'GSM6268456': [1.0], 'GSM6268457': [1.0], 'GSM6268458': [1.0], 'GSM6268459': [1.0], 'GSM6268460': [1.0], 'GSM6268461': [1.0], 'GSM6268462': [1.0], 'GSM6268463': [1.0], 'GSM6268464': [1.0], 'GSM6268465': [1.0], 'GSM6268466': [1.0], 'GSM6268467': [1.0], 'GSM6268468': [1.0], 'GSM6268469': [1.0], 'GSM6268470': [1.0], 'GSM6268471': [1.0], 'GSM6268472': [1.0], 'GSM6268473': [1.0], 'GSM6268474': [1.0], 'GSM6268475': [1.0], 'GSM6268476': [1.0], 'GSM6268477': [1.0], 'GSM6268478': [1.0], 'GSM6268479': [1.0], 'GSM6268480': [1.0], 'GSM6268481': [1.0], 'GSM6268482': [1.0], 'GSM6268483': [1.0], 'GSM6268484': [1.0], 'GSM6268485': [1.0], 'GSM6268486': [1.0], 'GSM6268487': [1.0], 'GSM6268488': [1.0], 'GSM6268489': [1.0], 'GSM6268490': [1.0], 'GSM6268491': [1.0], 'GSM6268492': [1.0], 'GSM6268493': [1.0], 'GSM6268494': [1.0], 'GSM6268495': [1.0], 'GSM6268496': [1.0], 'GSM6268497': [1.0], 'GSM6268498': [1.0], 'GSM6268499': [1.0], 'GSM6268500': [1.0], 'GSM6268501': [1.0], 'GSM6268502': [1.0], 'GSM6268503': [1.0], 'GSM6268504': [1.0], 'GSM6268505': [1.0], 'GSM6268506': [1.0], 'GSM6268507': [1.0], 'GSM6268508': [1.0], 'GSM6268509': [1.0], 'GSM6268510': [1.0], 'GSM6268511': [1.0], 'GSM6268512': [1.0], 'GSM6268513': [1.0], 'GSM6268514': [1.0]}\n",
      "Re-extracted clinical data shape: (1, 148)\n",
      "Updated clinical features saved to ../../output/preprocess/Crohns_Disease/clinical_data/GSE207022.csv\n",
      "Linking clinical and genetic data...\n",
      "Linked data shape: (148, 18623)\n",
      "Handling missing values...\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Data shape after handling missing values: (148, 18623)\n",
      "\n",
      "Checking for bias in feature variables:\n",
      "For the feature 'Crohns_Disease', the least common label is '0.0' with 23 occurrences. This represents 15.54% of the dataset.\n",
      "The distribution of the feature 'Crohns_Disease' in this dataset is fine.\n",
      "\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Linked data saved to ../../output/preprocess/Crohns_Disease/GSE207022.csv\n",
      "Final dataset shape: (148, 18623)\n"
     ]
    }
   ],
   "source": [
    "# 1. Normalize gene symbols in the gene expression data\n",
    "print(\"Normalizing gene symbols...\")\n",
    "gene_data_normalized = normalize_gene_symbols_in_index(gene_data)\n",
    "print(f\"Gene data shape after normalization: {gene_data_normalized.shape[0]} genes × {gene_data_normalized.shape[1]} samples\")\n",
    "\n",
    "# Save the normalized gene data\n",
    "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
    "gene_data_normalized.to_csv(out_gene_data_file)\n",
    "print(f\"Normalized gene expression data saved to {out_gene_data_file}\")\n",
    "\n",
    "# 2. Read the clinical features from the previously saved file\n",
    "print(\"Loading clinical features...\")\n",
    "clinical_features = pd.read_csv(out_clinical_data_file, index_col=0)\n",
    "print(f\"Clinical features shape: {clinical_features.shape}\")\n",
    "print(\"Clinical features preview:\")\n",
    "print(preview_df(clinical_features))\n",
    "\n",
    "# First, let's look at the column names of both datasets to ensure proper linking\n",
    "print(\"\\nGene data columns (first 5):\", gene_data_normalized.columns[:5].tolist())\n",
    "print(\"Clinical data rows:\", clinical_features.index.tolist())\n",
    "\n",
    "# Since we've detected issues with data linking, let's manually inspect the data formats\n",
    "# and make necessary adjustments for proper alignment\n",
    "if clinical_features.shape[0] == 0:\n",
    "    print(\"Error: Clinical features dataframe is empty. Cannot proceed with linking.\")\n",
    "    is_usable = validate_and_save_cohort_info(\n",
    "        is_final=True,\n",
    "        cohort=cohort,\n",
    "        info_path=json_path,\n",
    "        is_gene_available=True,\n",
    "        is_trait_available=False,\n",
    "        is_biased=True,\n",
    "        df=pd.DataFrame(),\n",
    "        note=\"Clinical features dataframe is empty, cannot link with gene data.\"\n",
    "    )\n",
    "else:\n",
    "    # Re-extract the clinical data directly from the matrix file\n",
    "    print(\"Re-extracting clinical data from the original source...\")\n",
    "    # Get background information and clinical data again\n",
    "    background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
    "    clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
    "    background_info, original_clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
    "    \n",
    "    # Extract clinical features properly\n",
    "    selected_clinical_df = geo_select_clinical_features(\n",
    "        clinical_df=original_clinical_data,\n",
    "        trait=trait,\n",
    "        trait_row=trait_row,\n",
    "        convert_trait=convert_trait,\n",
    "        age_row=age_row,\n",
    "        convert_age=convert_age,\n",
    "        gender_row=gender_row,\n",
    "        convert_gender=convert_gender\n",
    "    )\n",
    "    \n",
    "    print(\"Re-extracted clinical features preview:\")\n",
    "    print(preview_df(selected_clinical_df))\n",
    "    print(f\"Re-extracted clinical data shape: {selected_clinical_df.shape}\")\n",
    "    \n",
    "    # Save the properly extracted clinical features\n",
    "    selected_clinical_df.to_csv(out_clinical_data_file)\n",
    "    print(f\"Updated clinical features saved to {out_clinical_data_file}\")\n",
    "    \n",
    "    # 2. Link clinical and genetic data using the re-extracted clinical data\n",
    "    print(\"Linking clinical and genetic data...\")\n",
    "    linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data_normalized)\n",
    "    print(f\"Linked data shape: {linked_data.shape}\")\n",
    "    \n",
    "    # Check if the linked data has adequate data\n",
    "    if linked_data.shape[0] == 0 or linked_data.shape[1] <= 4:  # 4 is an arbitrary small number\n",
    "        print(\"Error: Linked data has insufficient samples or features. Dataset cannot be processed further.\")\n",
    "        is_usable = validate_and_save_cohort_info(\n",
    "            is_final=True,\n",
    "            cohort=cohort,\n",
    "            info_path=json_path,\n",
    "            is_gene_available=True,\n",
    "            is_trait_available=True,\n",
    "            is_biased=True,\n",
    "            df=linked_data,\n",
    "            note=\"Failed to properly link gene expression data with clinical features.\"\n",
    "        )\n",
    "    else:\n",
    "        # 3. Handle missing values systematically\n",
    "        print(\"Handling missing values...\")\n",
    "        linked_data_clean = handle_missing_values(linked_data, trait_col=trait)\n",
    "        print(f\"Data shape after handling missing values: {linked_data_clean.shape}\")\n",
    "        \n",
    "        # Check if there are still samples after missing value handling\n",
    "        if linked_data_clean.shape[0] == 0:\n",
    "            print(\"Error: No samples remain after handling missing values.\")\n",
    "            is_usable = validate_and_save_cohort_info(\n",
    "                is_final=True,\n",
    "                cohort=cohort,\n",
    "                info_path=json_path,\n",
    "                is_gene_available=True,\n",
    "                is_trait_available=True,\n",
    "                is_biased=True,\n",
    "                df=pd.DataFrame(),\n",
    "                note=\"All samples were removed during missing value handling.\"\n",
    "            )\n",
    "        else:\n",
    "            # 4. Check if the dataset is biased\n",
    "            print(\"\\nChecking for bias in feature variables:\")\n",
    "            is_biased, linked_data_final = judge_and_remove_biased_features(linked_data_clean, trait)\n",
    "            \n",
    "            # 5. Conduct final quality validation\n",
    "            is_usable = validate_and_save_cohort_info(\n",
    "                is_final=True,\n",
    "                cohort=cohort,\n",
    "                info_path=json_path,\n",
    "                is_gene_available=True,\n",
    "                is_trait_available=True,\n",
    "                is_biased=is_biased,\n",
    "                df=linked_data_final,\n",
    "                note=\"Dataset contains gene expression data for Crohn's Disease subtypes (penetrating vs stricturing).\"\n",
    "            )\n",
    "            \n",
    "            # 6. Save linked data if usable\n",
    "            if is_usable:\n",
    "                os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
    "                linked_data_final.to_csv(out_data_file)\n",
    "                print(f\"Linked data saved to {out_data_file}\")\n",
    "                print(f\"Final dataset shape: {linked_data_final.shape}\")\n",
    "            else:\n",
    "                print(\"Dataset deemed not usable for trait association studies, linked data not saved.\")"
   ]
  }
 ],
 "metadata": {
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.16"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}