File size: 50,451 Bytes
e4183cf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "0f8b4d34",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T08:33:57.360300Z",
"iopub.status.busy": "2025-03-25T08:33:57.360070Z",
"iopub.status.idle": "2025-03-25T08:33:57.525603Z",
"shell.execute_reply": "2025-03-25T08:33:57.525274Z"
}
},
"outputs": [],
"source": [
"import sys\n",
"import os\n",
"sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
"\n",
"# Path Configuration\n",
"from tools.preprocess import *\n",
"\n",
"# Processing context\n",
"trait = \"Crohns_Disease\"\n",
"cohort = \"GSE207022\"\n",
"\n",
"# Input paths\n",
"in_trait_dir = \"../../input/GEO/Crohns_Disease\"\n",
"in_cohort_dir = \"../../input/GEO/Crohns_Disease/GSE207022\"\n",
"\n",
"# Output paths\n",
"out_data_file = \"../../output/preprocess/Crohns_Disease/GSE207022.csv\"\n",
"out_gene_data_file = \"../../output/preprocess/Crohns_Disease/gene_data/GSE207022.csv\"\n",
"out_clinical_data_file = \"../../output/preprocess/Crohns_Disease/clinical_data/GSE207022.csv\"\n",
"json_path = \"../../output/preprocess/Crohns_Disease/cohort_info.json\"\n"
]
},
{
"cell_type": "markdown",
"id": "3697486b",
"metadata": {},
"source": [
"### Step 1: Initial Data Loading"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "3f907236",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T08:33:57.527022Z",
"iopub.status.busy": "2025-03-25T08:33:57.526873Z",
"iopub.status.idle": "2025-03-25T08:33:57.719591Z",
"shell.execute_reply": "2025-03-25T08:33:57.719251Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Background Information:\n",
"!Series_title\t\"Efficacy and safety of ustekinumab treatment in patients with Crohn's disease\"\n",
"!Series_summary\t\"UNITI-2 was a phase 3 clinical trial (ClinicalTrials.gov Identifier: NCT01369342) comparing the effects (both positive and negative) of an initial treatment with ustekinumab to a placebo over 8 weeks in patients with moderately to severely active Crohn's disease.\"\n",
"!Series_overall_design\t\"A gene expression profiling study was conducted in which rectum biopsy samples were collected for RNA extraction and hybridization to microarrays from patients (n=125) with moderate-to-severe Crohn's disease and from non-IBD subjects (n=23).\"\n",
"Sample Characteristics Dictionary:\n",
"{0: ['tissue: rectum'], 1: ['donor id: CNTO1275CRD3002-20554', 'donor id: CNTO1275CRD3002-20667', 'donor id: CNTO1275CRD3002-20449', 'donor id: CNTO1275CRD3002-20927', 'donor id: CNTO1275CRD3002-20270', 'donor id: CNTO1275CRD3002-20072', 'donor id: CNTO1275CRD3002-20109', 'donor id: CNTO1275CRD3002-20346', 'donor id: HC-1', 'donor id: HC-2', 'donor id: HC-3', 'donor id: HC-4', 'donor id: HC-5', 'donor id: HC-6', 'donor id: HC-7', 'donor id: HC-8', 'donor id: HC-9', 'donor id: HC-10', 'donor id: HC-11', 'donor id: HC-12', 'donor id: HC-13', 'donor id: HC-14', 'donor id: HC-15', 'donor id: HC-16', 'donor id: HC-17', 'donor id: HC-18', 'donor id: HC-19', 'donor id: HC-20', 'donor id: HC-21', 'donor id: HC-22'], 2: ['visit: I-WK0'], 3: [\"diagnosis: Crohn's disease\", 'diagnosis: healthy control'], 4: ['treatment: Ustekinumab 130 mg IV', 'treatment: Ustekinumab 6 mg/kg (520 mg)', 'treatment: Placebo IV', 'treatment: Ustekinumab 6 mg/kg (390 mg)', 'treatment: NA', 'treatment: Ustekinumab 6 mg/kg (260 mg)'], 5: ['inflamed area at week 0: Ileum and colon', 'inflamed area at week 0: Colon only', 'inflamed area at week 0: NA'], 6: ['mucosal healing at week 8: N', 'mucosal healing at week 8: NA', 'mucosal healing at week 8: Y']}\n"
]
}
],
"source": [
"from tools.preprocess import *\n",
"# 1. Identify the paths to the SOFT file and the matrix file\n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"\n",
"# 2. Read the matrix file to obtain background information and sample characteristics data\n",
"background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
"clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
"background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
"\n",
"# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
"sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
"\n",
"# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
"print(\"Background Information:\")\n",
"print(background_info)\n",
"print(\"Sample Characteristics Dictionary:\")\n",
"print(sample_characteristics_dict)\n"
]
},
{
"cell_type": "markdown",
"id": "8d858784",
"metadata": {},
"source": [
"### Step 2: Dataset Analysis and Clinical Feature Extraction"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "8b35b647",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T08:33:57.720882Z",
"iopub.status.busy": "2025-03-25T08:33:57.720776Z",
"iopub.status.idle": "2025-03-25T08:33:57.735229Z",
"shell.execute_reply": "2025-03-25T08:33:57.734940Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Preview of selected clinical features:\n",
"{'CNTO1275CRD3002-20554': [1.0], 'CNTO1275CRD3002-20667': [1.0], 'CNTO1275CRD3002-20449': [1.0], 'CNTO1275CRD3002-20927': [1.0], 'CNTO1275CRD3002-20270': [1.0], 'CNTO1275CRD3002-20072': [1.0], 'CNTO1275CRD3002-20109': [1.0], 'CNTO1275CRD3002-20346': [1.0], 'HC-1': [0.0], 'HC-2': [0.0], 'HC-3': [0.0], 'HC-4': [0.0], 'HC-5': [0.0], 'HC-6': [0.0], 'HC-7': [0.0], 'HC-8': [0.0], 'HC-9': [0.0], 'HC-10': [0.0], 'HC-11': [0.0], 'HC-12': [0.0], 'HC-13': [0.0], 'HC-14': [0.0], 'HC-15': [0.0], 'HC-16': [0.0], 'HC-17': [0.0], 'HC-18': [0.0], 'HC-19': [0.0], 'HC-20': [0.0], 'HC-21': [0.0], 'HC-22': [0.0]}\n",
"Clinical data saved to ../../output/preprocess/Crohns_Disease/clinical_data/GSE207022.csv\n"
]
}
],
"source": [
"import pandas as pd\n",
"import os\n",
"import json\n",
"from typing import Optional, Callable, Dict, Any\n",
"\n",
"# 1. Determine gene expression data availability\n",
"is_gene_available = True # This appears to be gene expression data from microarrays\n",
"\n",
"# 2. Determine clinical data availability and create conversion functions\n",
"\n",
"# 2.1 Identify rows containing relevant clinical data\n",
"trait_row = 3 # 'diagnosis: Crohn's disease', 'diagnosis: healthy control'\n",
"age_row = None # Age is not available in the sample characteristics\n",
"gender_row = None # Gender is not available in the sample characteristics\n",
"\n",
"# 2.2 Create conversion functions for clinical variables\n",
"\n",
"def convert_trait(val: str) -> int:\n",
" \"\"\"Convert Crohn's disease status to binary.\"\"\"\n",
" if val is None:\n",
" return None\n",
" if ':' in val:\n",
" val = val.split(':', 1)[1].strip().lower()\n",
" else:\n",
" val = val.strip().lower()\n",
" \n",
" if \"crohn\" in val:\n",
" return 1 # Has Crohn's disease\n",
" elif \"healthy\" in val or \"control\" in val:\n",
" return 0 # Healthy control\n",
" return None\n",
"\n",
"def convert_age(val: str) -> Optional[float]:\n",
" \"\"\"Convert age to continuous value.\"\"\"\n",
" # Not used since age data is not available\n",
" return None\n",
"\n",
"def convert_gender(val: str) -> Optional[int]:\n",
" \"\"\"Convert gender to binary (0 for female, 1 for male).\"\"\"\n",
" # Not used since gender data is not available\n",
" return None\n",
"\n",
"# 3. Save initial metadata about dataset usability\n",
"is_trait_available = trait_row is not None\n",
"validate_and_save_cohort_info(\n",
" is_final=False,\n",
" cohort=cohort,\n",
" info_path=json_path,\n",
" is_gene_available=is_gene_available,\n",
" is_trait_available=is_trait_available\n",
")\n",
"\n",
"# 4. Extract clinical features if trait data is available\n",
"if trait_row is not None:\n",
" # Create the clinical data DataFrame from the sample characteristics dictionary\n",
" # Based on the previous output, we have samples in columns and characteristics in rows\n",
" sample_characteristics = {\n",
" 0: ['tissue: rectum'], \n",
" 1: ['donor id: CNTO1275CRD3002-20554', 'donor id: CNTO1275CRD3002-20667', 'donor id: CNTO1275CRD3002-20449', \n",
" 'donor id: CNTO1275CRD3002-20927', 'donor id: CNTO1275CRD3002-20270', 'donor id: CNTO1275CRD3002-20072', \n",
" 'donor id: CNTO1275CRD3002-20109', 'donor id: CNTO1275CRD3002-20346', 'donor id: HC-1', 'donor id: HC-2', \n",
" 'donor id: HC-3', 'donor id: HC-4', 'donor id: HC-5', 'donor id: HC-6', 'donor id: HC-7', 'donor id: HC-8', \n",
" 'donor id: HC-9', 'donor id: HC-10', 'donor id: HC-11', 'donor id: HC-12', 'donor id: HC-13', 'donor id: HC-14', \n",
" 'donor id: HC-15', 'donor id: HC-16', 'donor id: HC-17', 'donor id: HC-18', 'donor id: HC-19', 'donor id: HC-20', \n",
" 'donor id: HC-21', 'donor id: HC-22'], \n",
" 2: ['visit: I-WK0'], \n",
" 3: [\"diagnosis: Crohn's disease\", 'diagnosis: healthy control'], \n",
" 4: ['treatment: Ustekinumab 130 mg IV', 'treatment: Ustekinumab 6 mg/kg (520 mg)', 'treatment: Placebo IV', \n",
" 'treatment: Ustekinumab 6 mg/kg (390 mg)', 'treatment: NA', 'treatment: Ustekinumab 6 mg/kg (260 mg)'], \n",
" 5: ['inflamed area at week 0: Ileum and colon', 'inflamed area at week 0: Colon only', 'inflamed area at week 0: NA'], \n",
" 6: ['mucosal healing at week 8: N', 'mucosal healing at week 8: NA', 'mucosal healing at week 8: Y']\n",
" }\n",
" \n",
" # Let's convert this dictionary to a DataFrame that can be used with geo_select_clinical_features\n",
" # The function expects rows as sample characteristics and columns as samples\n",
" \n",
" # Create a list of sample IDs from the donor id row (row 1)\n",
" sample_ids = []\n",
" for donor_id in sample_characteristics[1]:\n",
" if ':' in donor_id:\n",
" sample_id = donor_id.split(':', 1)[1].strip()\n",
" sample_ids.append(sample_id)\n",
" \n",
" # Initialize a DataFrame with characteristics as rows and samples as columns\n",
" clinical_data = pd.DataFrame(index=range(len(sample_characteristics)), columns=sample_ids)\n",
" \n",
" # Fill the DataFrame with characteristic values\n",
" for row_idx, values in sample_characteristics.items():\n",
" # Handle the case where one row has multiple values (different for different samples)\n",
" if len(values) == 1:\n",
" # Same value for all samples\n",
" for col in clinical_data.columns:\n",
" clinical_data.iloc[row_idx, clinical_data.columns.get_loc(col)] = values[0]\n",
" else:\n",
" # Different values for different samples or less values than samples\n",
" # For diagnosis (row 3), we need to infer values from donor IDs\n",
" if row_idx == 3: # Diagnosis row\n",
" for col_idx, col in enumerate(clinical_data.columns):\n",
" if 'HC-' in col: # Healthy control\n",
" clinical_data.iloc[row_idx, col_idx] = 'diagnosis: healthy control'\n",
" else: # Crohn's disease\n",
" clinical_data.iloc[row_idx, col_idx] = \"diagnosis: Crohn's disease\"\n",
" else:\n",
" # For other rows, we'll set to None as we don't have enough information to map\n",
" for col_idx, col in enumerate(clinical_data.columns):\n",
" clinical_data.iloc[row_idx, col_idx] = None\n",
" \n",
" # Extract clinical features\n",
" selected_clinical = geo_select_clinical_features(\n",
" clinical_df=clinical_data,\n",
" trait=trait,\n",
" trait_row=trait_row,\n",
" convert_trait=convert_trait,\n",
" age_row=age_row,\n",
" convert_age=convert_age,\n",
" gender_row=gender_row,\n",
" convert_gender=convert_gender\n",
" )\n",
" \n",
" # Preview the extracted clinical features\n",
" preview = preview_df(selected_clinical)\n",
" print(\"Preview of selected clinical features:\")\n",
" print(preview)\n",
" \n",
" # Save the clinical data\n",
" os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
" selected_clinical.to_csv(out_clinical_data_file)\n",
" print(f\"Clinical data saved to {out_clinical_data_file}\")\n"
]
},
{
"cell_type": "markdown",
"id": "24cf5a7b",
"metadata": {},
"source": [
"### Step 3: Gene Data Extraction"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "55da15c9",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T08:33:57.736353Z",
"iopub.status.busy": "2025-03-25T08:33:57.736247Z",
"iopub.status.idle": "2025-03-25T08:33:58.128283Z",
"shell.execute_reply": "2025-03-25T08:33:58.127909Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"First 20 gene/probe identifiers:\n",
"Index(['1007_PM_s_at', '1053_PM_at', '117_PM_at', '121_PM_at', '1255_PM_g_at',\n",
" '1294_PM_at', '1316_PM_at', '1320_PM_at', '1405_PM_i_at', '1431_PM_at',\n",
" '1438_PM_at', '1487_PM_at', '1494_PM_f_at', '1552256_PM_a_at',\n",
" '1552257_PM_a_at', '1552258_PM_at', '1552261_PM_at', '1552263_PM_at',\n",
" '1552264_PM_a_at', '1552266_PM_at'],\n",
" dtype='object', name='ID')\n",
"\n",
"Gene data dimensions: 54715 genes × 148 samples\n"
]
}
],
"source": [
"# 1. Re-identify the SOFT and matrix files to ensure we have the correct paths\n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"\n",
"# 2. Extract the gene expression data from the matrix file\n",
"gene_data = get_genetic_data(matrix_file)\n",
"\n",
"# 3. Print the first 20 row IDs (gene or probe identifiers)\n",
"print(\"\\nFirst 20 gene/probe identifiers:\")\n",
"print(gene_data.index[:20])\n",
"\n",
"# 4. Print the dimensions of the gene expression data\n",
"print(f\"\\nGene data dimensions: {gene_data.shape[0]} genes × {gene_data.shape[1]} samples\")\n",
"\n",
"# Note: we keep is_gene_available as True since we successfully extracted gene expression data\n",
"is_gene_available = True\n"
]
},
{
"cell_type": "markdown",
"id": "fdecb4fe",
"metadata": {},
"source": [
"### Step 4: Gene Identifier Review"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "5762dbd0",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T08:33:58.129510Z",
"iopub.status.busy": "2025-03-25T08:33:58.129392Z",
"iopub.status.idle": "2025-03-25T08:33:58.131254Z",
"shell.execute_reply": "2025-03-25T08:33:58.130975Z"
}
},
"outputs": [],
"source": [
"# Looking at the identifiers: '1007_PM_s_at', '1053_PM_at', etc.\n",
"# These are Affymetrix probe IDs from a microarray platform, not human gene symbols\n",
"# They need to be mapped to standard gene symbols for analysis\n",
"\n",
"requires_gene_mapping = True\n"
]
},
{
"cell_type": "markdown",
"id": "ec50cac0",
"metadata": {},
"source": [
"### Step 5: Gene Annotation"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "bbe63921",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T08:33:58.132321Z",
"iopub.status.busy": "2025-03-25T08:33:58.132220Z",
"iopub.status.idle": "2025-03-25T08:34:07.025674Z",
"shell.execute_reply": "2025-03-25T08:34:07.025341Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Gene annotation preview:\n",
"{'ID': ['1007_PM_s_at', '1053_PM_at', '117_PM_at', '121_PM_at', '1255_PM_g_at'], 'GB_ACC': ['U48705', 'M87338', 'X51757', 'X69699', 'L36861'], 'SPOT_ID': [nan, nan, nan, nan, nan], 'Species Scientific Name': ['Homo sapiens', 'Homo sapiens', 'Homo sapiens', 'Homo sapiens', 'Homo sapiens'], 'Annotation Date': ['Aug 20, 2010', 'Aug 20, 2010', 'Aug 20, 2010', 'Aug 20, 2010', 'Aug 20, 2010'], 'Sequence Type': ['Exemplar sequence', 'Exemplar sequence', 'Exemplar sequence', 'Exemplar sequence', 'Exemplar sequence'], 'Sequence Source': ['Affymetrix Proprietary Database', 'GenBank', 'Affymetrix Proprietary Database', 'GenBank', 'Affymetrix Proprietary Database'], 'Target Description': ['U48705 /FEATURE=mRNA /DEFINITION=HSU48705 Human receptor tyrosine kinase DDR gene, complete cds', 'M87338 /FEATURE= /DEFINITION=HUMA1SBU Human replication factor C, 40-kDa subunit (A1) mRNA, complete cds', \"X51757 /FEATURE=cds /DEFINITION=HSP70B Human heat-shock protein HSP70B' gene\", 'X69699 /FEATURE= /DEFINITION=HSPAX8A H.sapiens Pax8 mRNA', 'L36861 /FEATURE=expanded_cds /DEFINITION=HUMGCAPB Homo sapiens guanylate cyclase activating protein (GCAP) gene exons 1-4, complete cds'], 'Representative Public ID': ['U48705', 'M87338', 'X51757', 'X69699', 'L36861'], 'Gene Title': ['discoidin domain receptor tyrosine kinase 1', 'replication factor C (activator 1) 2, 40kDa', \"heat shock 70kDa protein 6 (HSP70B')\", 'paired box 8', 'guanylate cyclase activator 1A (retina)'], 'Gene Symbol': ['DDR1', 'RFC2', 'HSPA6', 'PAX8', 'GUCA1A'], 'ENTREZ_GENE_ID': ['780', '5982', '3310', '7849', '2978'], 'RefSeq Transcript ID': ['NM_001954 /// NM_013993 /// NM_013994', 'NM_002914 /// NM_181471', 'NM_002155', 'NM_003466 /// NM_013951 /// NM_013952 /// NM_013953 /// NM_013992', 'NM_000409'], 'Gene Ontology Biological Process': ['0001558 // regulation of cell growth // inferred from electronic annotation /// 0001952 // regulation of cell-matrix adhesion // inferred from electronic annotation /// 0006468 // protein amino acid phosphorylation // inferred from electronic annotation /// 0007155 // cell adhesion // inferred from electronic annotation /// 0007155 // cell adhesion // traceable author statement /// 0007169 // transmembrane receptor protein tyrosine kinase signaling pathway // inferred from electronic annotation /// 0007566 // embryo implantation // inferred from electronic annotation /// 0008285 // negative regulation of cell proliferation // inferred from electronic annotation /// 0018108 // peptidyl-tyrosine phosphorylation // inferred from electronic annotation /// 0031100 // organ regeneration // inferred from electronic annotation /// 0043583 // ear development // inferred from electronic annotation /// 0043588 // skin development // inferred from electronic annotation /// 0051789 // response to protein stimulus // inferred from electronic annotation /// 0060444 // branching involved in mammary gland duct morphogenesis // inferred from electronic annotation /// 0060749 // mammary gland alveolus development // inferred from electronic annotation', '0006260 // DNA replication // not recorded /// 0006260 // DNA replication // inferred from electronic annotation /// 0006297 // nucleotide-excision repair, DNA gap filling // not recorded /// 0015979 // photosynthesis // inferred from electronic annotation /// 0015995 // chlorophyll biosynthetic process // inferred from electronic annotation', '0006950 // response to stress // inferred from electronic annotation /// 0006986 // response to unfolded protein // traceable author statement', '0001656 // metanephros development // inferred from electronic annotation /// 0006350 // transcription // inferred from electronic annotation /// 0007275 // multicellular organismal development // inferred from electronic annotation /// 0009653 // anatomical structure morphogenesis // traceable author statement /// 0030154 // cell differentiation // inferred from electronic annotation /// 0030878 // thyroid gland development // inferred from electronic annotation /// 0045449 // regulation of transcription // inferred from electronic annotation /// 0045893 // positive regulation of transcription, DNA-dependent // inferred from sequence or structural similarity /// 0045893 // positive regulation of transcription, DNA-dependent // inferred from direct assay /// 0045944 // positive regulation of transcription from RNA polymerase II promoter // inferred from electronic annotation', '0007165 // signal transduction // non-traceable author statement /// 0007601 // visual perception // inferred from electronic annotation /// 0007601 // visual perception // traceable author statement /// 0007602 // phototransduction // inferred from electronic annotation /// 0031282 // regulation of guanylate cyclase activity // inferred from electronic annotation /// 0050896 // response to stimulus // inferred from electronic annotation'], 'Gene Ontology Cellular Component': ['0005576 // extracellular region // inferred from electronic annotation /// 0005886 // plasma membrane // inferred from electronic annotation /// 0005887 // integral to plasma membrane // traceable author statement /// 0016020 // membrane // inferred from electronic annotation /// 0016021 // integral to membrane // inferred from electronic annotation /// 0016323 // basolateral plasma membrane // inferred from electronic annotation', '0005634 // nucleus // inferred from electronic annotation /// 0005654 // nucleoplasm // not recorded /// 0005663 // DNA replication factor C complex // inferred from direct assay /// 0005663 // DNA replication factor C complex // inferred from electronic annotation', nan, '0005634 // nucleus // inferred from electronic annotation /// 0005654 // nucleoplasm // inferred from sequence or structural similarity /// 0005654 // nucleoplasm // inferred from electronic annotation', '0016020 // membrane // inferred from electronic annotation'], 'Gene Ontology Molecular Function': ['0000166 // nucleotide binding // inferred from electronic annotation /// 0004672 // protein kinase activity // inferred from electronic annotation /// 0004713 // protein tyrosine kinase activity // inferred from electronic annotation /// 0004714 // transmembrane receptor protein tyrosine kinase activity // inferred from electronic annotation /// 0004714 // transmembrane receptor protein tyrosine kinase activity // traceable author statement /// 0004872 // receptor activity // inferred from electronic annotation /// 0005515 // protein binding // inferred from physical interaction /// 0005515 // protein binding // inferred from electronic annotation /// 0005524 // ATP binding // inferred from electronic annotation /// 0016301 // kinase activity // inferred from electronic annotation /// 0016740 // transferase activity // inferred from electronic annotation', '0000166 // nucleotide binding // inferred from electronic annotation /// 0003677 // DNA binding // inferred from electronic annotation /// 0003689 // DNA clamp loader activity // inferred from electronic annotation /// 0005515 // protein binding // inferred from physical interaction /// 0005524 // ATP binding // inferred from electronic annotation /// 0005524 // ATP binding // traceable author statement /// 0016851 // magnesium chelatase activity // inferred from electronic annotation /// 0017111 // nucleoside-triphosphatase activity // inferred from electronic annotation', '0000166 // nucleotide binding // inferred from electronic annotation /// 0005524 // ATP binding // inferred from electronic annotation', '0003677 // DNA binding // inferred from direct assay /// 0003677 // DNA binding // inferred from electronic annotation /// 0003700 // transcription factor activity // traceable author statement /// 0004996 // thyroid-stimulating hormone receptor activity // traceable author statement /// 0005515 // protein binding // inferred from sequence or structural similarity /// 0005515 // protein binding // inferred from electronic annotation /// 0005515 // protein binding // inferred from physical interaction /// 0016563 // transcription activator activity // inferred from sequence or structural similarity /// 0016563 // transcription activator activity // inferred from direct assay /// 0016563 // transcription activator activity // inferred from electronic annotation /// 0043565 // sequence-specific DNA binding // inferred from electronic annotation', '0005509 // calcium ion binding // inferred from electronic annotation /// 0008048 // calcium sensitive guanylate cyclase activator activity // traceable author statement /// 0008048 // calcium sensitive guanylate cyclase activator activity // inferred from electronic annotation /// 0030249 // guanylate cyclase regulator activity // inferred from electronic annotation']}\n"
]
}
],
"source": [
"# 1. First get the file paths using geo_get_relevant_filepaths function\n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"\n",
"# 2. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.\n",
"gene_annotation = get_gene_annotation(soft_file)\n",
"\n",
"# 3. Use the 'preview_df' function from the library to preview the data and print out the results.\n",
"print(\"Gene annotation preview:\")\n",
"print(preview_df(gene_annotation))\n"
]
},
{
"cell_type": "markdown",
"id": "1598ccdc",
"metadata": {},
"source": [
"### Step 6: Gene Identifier Mapping"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "77cfe9de",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T08:34:07.026996Z",
"iopub.status.busy": "2025-03-25T08:34:07.026878Z",
"iopub.status.idle": "2025-03-25T08:34:07.597872Z",
"shell.execute_reply": "2025-03-25T08:34:07.597547Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Original probe data shape: 18989 probes × 148 samples\n",
"Mapped gene data shape: 18989 genes × 148 samples\n",
"\n",
"First 10 gene symbols after mapping:\n",
"Index(['A1BG', 'A1CF', 'A2BP1', 'A2LD1', 'A2M', 'A2ML1', 'A4GALT', 'A4GNT',\n",
" 'AAA1', 'AAAS'],\n",
" dtype='object', name='Gene')\n",
"\n",
"Preview of gene expression data after mapping:\n",
"{'GSM6268367': [2.71, 6.53, 12.6, 6.15, 14.239999999999998], 'GSM6268368': [2.99, 8.16, 12.69, 6.15, 13.29], 'GSM6268369': [3.27, 6.86, 12.58, 7.17, 14.47], 'GSM6268370': [2.81, 8.51, 13.43, 6.57, 12.69], 'GSM6268371': [2.65, 8.66, 14.03, 6.19, 13.02], 'GSM6268372': [2.63, 7.27, 12.760000000000002, 6.52, 13.45], 'GSM6268373': [2.73, 8.3, 13.530000000000001, 6.13, 13.530000000000001], 'GSM6268374': [2.74, 8.21, 13.59, 6.619999999999999, 13.52], 'GSM6268375': [2.91, 7.81, 13.21, 6.03, 13.809999999999999], 'GSM6268376': [2.74, 8.43, 14.37, 6.51, 13.33], 'GSM6268377': [2.65, 8.33, 13.76, 6.779999999999999, 12.84], 'GSM6268378': [2.6, 8.3, 15.07, 6.8, 12.850000000000001], 'GSM6268379': [2.83, 8.06, 13.290000000000001, 6.46, 13.68], 'GSM6268380': [2.68, 8.12, 12.83, 7.4, 13.8], 'GSM6268381': [2.94, 8.49, 14.209999999999999, 6.75, 12.48], 'GSM6268382': [2.7, 8.4, 13.98, 6.220000000000001, 13.120000000000001], 'GSM6268383': [2.97, 7.87, 13.620000000000001, 6.2, 13.84], 'GSM6268384': [2.74, 8.27, 14.34, 6.41, 12.91], 'GSM6268385': [2.74, 8.08, 13.17, 6.47, 13.780000000000001], 'GSM6268386': [2.8, 8.25, 13.32, 6.55, 12.83], 'GSM6268387': [2.67, 8.16, 13.83, 6.57, 12.440000000000001], 'GSM6268388': [2.89, 8.4, 13.12, 6.42, 13.79], 'GSM6268389': [2.91, 8.09, 13.23, 6.800000000000001, 13.740000000000002], 'GSM6268390': [2.9, 7.57, 13.55, 6.62, 14.2], 'GSM6268391': [2.87, 7.78, 13.71, 6.66, 13.99], 'GSM6268392': [2.9, 8.16, 12.36, 6.220000000000001, 14.23], 'GSM6268393': [2.45, 8.24, 14.059999999999999, 6.4399999999999995, 14.05], 'GSM6268394': [2.81, 8.51, 13.129999999999999, 6.77, 12.94], 'GSM6268395': [3.03, 8.0, 14.52, 6.75, 13.68], 'GSM6268396': [3.05, 8.14, 13.48, 6.5600000000000005, 13.73], 'GSM6268397': [2.97, 7.79, 14.03, 6.57, 13.73], 'GSM6268398': [2.53, 8.01, 13.73, 6.12, 12.93], 'GSM6268399': [2.94, 8.1, 13.19, 7.1899999999999995, 13.42], 'GSM6268400': [2.68, 7.64, 12.8, 7.01, 13.73], 'GSM6268401': [3.21, 7.99, 13.28, 6.83, 12.850000000000001], 'GSM6268402': [2.82, 7.71, 12.8, 7.37, 13.350000000000001], 'GSM6268403': [2.8, 7.44, 12.870000000000001, 6.49, 14.829999999999998], 'GSM6268404': [2.72, 7.67, 13.84, 6.18, 13.24], 'GSM6268405': [2.61, 8.64, 13.54, 6.45, 12.370000000000001], 'GSM6268406': [3.03, 7.98, 13.27, 6.46, 12.41], 'GSM6268407': [3.21, 8.42, 12.64, 6.67, 13.09], 'GSM6268408': [3.28, 8.7, 12.83, 6.27, 12.959999999999999], 'GSM6268409': [2.8, 7.58, 12.1, 6.6, 14.27], 'GSM6268410': [2.63, 7.38, 13.05, 6.869999999999999, 14.73], 'GSM6268411': [3.06, 6.91, 12.57, 6.74, 13.94], 'GSM6268412': [2.96, 5.02, 12.56, 5.88, 14.68], 'GSM6268413': [3.09, 7.74, 13.56, 6.61, 12.57], 'GSM6268414': [2.65, 8.06, 12.879999999999999, 6.3100000000000005, 13.82], 'GSM6268415': [2.71, 8.29, 13.51, 7.369999999999999, 12.669999999999998], 'GSM6268416': [2.89, 7.45, 14.09, 6.21, 14.25], 'GSM6268417': [2.96, 8.46, 12.58, 6.390000000000001, 13.36], 'GSM6268418': [2.81, 8.29, 12.91, 6.5600000000000005, 13.18], 'GSM6268419': [2.65, 6.16, 12.49, 6.380000000000001, 13.030000000000001], 'GSM6268420': [3.15, 7.91, 13.620000000000001, 6.54, 13.47], 'GSM6268421': [2.7, 7.97, 14.31, 6.390000000000001, 12.57], 'GSM6268422': [2.84, 6.57, 12.93, 6.390000000000001, 14.169999999999998], 'GSM6268423': [2.83, 7.66, 15.92, 6.18, 12.77], 'GSM6268424': [2.59, 7.83, 13.629999999999999, 6.800000000000001, 13.1], 'GSM6268425': [2.62, 7.74, 13.440000000000001, 6.92, 12.95], 'GSM6268426': [2.75, 8.56, 12.97, 7.1, 11.940000000000001], 'GSM6268427': [2.86, 7.86, 13.25, 7.07, 13.07], 'GSM6268428': [2.82, 6.98, 13.649999999999999, 6.17, 13.29], 'GSM6268429': [3.02, 7.75, 13.47, 7.16, 13.2], 'GSM6268430': [2.99, 6.42, 12.55, 5.91, 14.71], 'GSM6268431': [2.68, 7.97, 14.05, 6.45, 13.13], 'GSM6268432': [2.9, 3.65, 13.09, 6.25, 11.05], 'GSM6268433': [2.69, 6.51, 12.73, 6.54, 13.41], 'GSM6268434': [2.88, 8.72, 13.08, 6.5600000000000005, 13.120000000000001], 'GSM6268435': [2.66, 8.07, 12.42, 6.72, 13.62], 'GSM6268436': [3.04, 8.48, 14.29, 6.34, 12.07], 'GSM6268437': [3.1, 5.77, 12.74, 6.3, 14.27], 'GSM6268438': [2.66, 8.31, 13.24, 6.59, 11.8], 'GSM6268439': [2.69, 8.58, 13.32, 5.88, 13.64], 'GSM6268440': [3.05, 7.88, 13.81, 6.470000000000001, 13.57], 'GSM6268441': [2.79, 7.45, 13.21, 6.390000000000001, 13.170000000000002], 'GSM6268442': [2.59, 7.91, 13.57, 6.41, 13.18], 'GSM6268443': [2.91, 3.8, 12.629999999999999, 6.4, 14.53], 'GSM6268444': [3.52, 8.23, 13.43, 6.78, 13.629999999999999], 'GSM6268445': [2.63, 8.27, 14.0, 6.24, 12.459999999999999], 'GSM6268446': [3.06, 8.2, 14.1, 6.630000000000001, 13.55], 'GSM6268447': [2.86, 8.03, 12.979999999999999, 6.779999999999999, 13.84], 'GSM6268448': [2.76, 7.38, 13.15, 6.279999999999999, 13.96], 'GSM6268449': [2.9, 8.01, 13.72, 6.01, 12.09], 'GSM6268450': [2.82, 7.69, 13.6, 6.43, 13.3], 'GSM6268451': [2.82, 7.26, 13.05, 6.66, 13.420000000000002], 'GSM6268452': [3.13, 7.68, 13.75, 6.0, 13.459999999999999], 'GSM6268453': [2.75, 7.81, 13.459999999999999, 6.45, 13.370000000000001], 'GSM6268454': [2.84, 7.35, 13.45, 6.609999999999999, 14.88], 'GSM6268455': [2.73, 7.83, 13.28, 5.890000000000001, 13.12], 'GSM6268456': [2.76, 7.26, 12.3, 6.75, 14.44], 'GSM6268457': [3.32, 7.47, 13.450000000000001, 7.33, 14.46], 'GSM6268458': [2.95, 8.37, 12.5, 6.470000000000001, 12.89], 'GSM6268459': [2.99, 8.55, 13.54, 6.220000000000001, 13.379999999999999], 'GSM6268460': [2.68, 7.9, 14.07, 6.87, 12.260000000000002], 'GSM6268461': [2.86, 7.47, 13.190000000000001, 6.5, 13.99], 'GSM6268462': [2.7, 7.25, 12.99, 6.529999999999999, 12.95], 'GSM6268463': [2.82, 8.24, 13.549999999999999, 6.17, 13.82], 'GSM6268464': [2.65, 8.64, 12.64, 6.39, 12.84], 'GSM6268465': [2.63, 7.74, 13.6, 6.470000000000001, 13.7], 'GSM6268466': [2.78, 8.22, 13.74, 6.26, 13.68], 'GSM6268467': [2.72, 8.45, 12.940000000000001, 6.3, 13.469999999999999], 'GSM6268468': [2.82, 7.63, 13.39, 6.59, 13.190000000000001], 'GSM6268469': [2.91, 7.89, 12.870000000000001, 6.199999999999999, 12.01], 'GSM6268470': [2.96, 7.04, 12.78, 6.54, 13.48], 'GSM6268471': [2.95, 8.31, 12.700000000000001, 6.52, 12.850000000000001], 'GSM6268472': [3.05, 5.96, 12.48, 6.42, 14.13], 'GSM6268473': [2.69, 7.73, 13.14, 6.73, 14.35], 'GSM6268474': [2.67, 7.72, 13.219999999999999, 6.67, 13.469999999999999], 'GSM6268475': [2.89, 8.18, 15.41, 7.279999999999999, 12.04], 'GSM6268476': [2.85, 7.82, 13.01, 6.0, 14.33], 'GSM6268477': [3.18, 7.96, 14.59, 6.41, 13.35], 'GSM6268478': [2.8, 7.73, 13.3, 6.34, 13.83], 'GSM6268479': [2.67, 8.03, 12.93, 6.45, 13.32], 'GSM6268480': [2.96, 8.3, 13.68, 6.75, 13.0], 'GSM6268481': [2.67, 8.57, 13.74, 6.6899999999999995, 13.0], 'GSM6268482': [2.67, 8.35, 13.41, 5.85, 13.57], 'GSM6268483': [2.87, 6.76, 12.53, 6.0, 14.39], 'GSM6268484': [2.79, 7.2, 12.63, 6.67, 13.8], 'GSM6268485': [2.93, 8.39, 12.66, 6.22, 13.2], 'GSM6268486': [2.83, 8.27, 12.62, 6.369999999999999, 13.509999999999998], 'GSM6268487': [2.87, 7.13, 13.23, 6.279999999999999, 13.75], 'GSM6268488': [2.71, 8.23, 14.3, 6.789999999999999, 10.920000000000002], 'GSM6268489': [2.71, 7.88, 13.540000000000001, 6.8, 13.42], 'GSM6268490': [2.52, 8.52, 13.100000000000001, 6.85, 13.290000000000001], 'GSM6268491': [2.7, 8.16, 13.43, 5.91, 13.02], 'GSM6268492': [3.03, 7.76, 14.18, 7.24, 14.29], 'GSM6268493': [2.73, 8.11, 13.38, 6.43, 12.18], 'GSM6268494': [3.01, 6.74, 14.459999999999999, 6.63, 13.330000000000002], 'GSM6268495': [2.99, 8.2, 13.18, 6.32, 13.43], 'GSM6268496': [2.71, 8.72, 13.47, 6.54, 12.59], 'GSM6268497': [2.72, 7.4, 13.17, 6.86, 14.06], 'GSM6268498': [2.66, 7.93, 13.39, 6.66, 13.26], 'GSM6268499': [3.0, 7.56, 12.57, 6.97, 13.86], 'GSM6268500': [2.68, 7.34, 13.79, 6.74, 12.98], 'GSM6268501': [2.96, 8.11, 12.66, 6.37, 13.469999999999999], 'GSM6268502': [2.62, 7.96, 13.219999999999999, 6.42, 13.129999999999999], 'GSM6268503': [3.15, 7.0, 12.77, 6.21, 14.77], 'GSM6268504': [3.15, 8.07, 14.370000000000001, 6.24, 13.08], 'GSM6268505': [2.74, 8.12, 13.100000000000001, 6.32, 13.79], 'GSM6268506': [2.92, 7.86, 13.4, 6.300000000000001, 12.94], 'GSM6268507': [2.94, 6.79, 12.97, 6.75, 14.0], 'GSM6268508': [2.94, 8.18, 14.0, 6.44, 13.82], 'GSM6268509': [2.82, 7.98, 13.56, 6.720000000000001, 13.23], 'GSM6268510': [2.89, 7.84, 13.16, 6.6899999999999995, 13.68], 'GSM6268511': [2.73, 8.45, 13.7, 6.29, 12.86], 'GSM6268512': [2.74, 8.19, 13.120000000000001, 6.9399999999999995, 12.370000000000001], 'GSM6268513': [2.93, 6.18, 13.03, 5.98, 15.200000000000001], 'GSM6268514': [2.84, 8.4, 12.61, 6.4, 11.92]}\n"
]
}
],
"source": [
"# 1. Observe gene identifiers in gene expression data and annotation data\n",
"# From previous steps we see:\n",
"# - Gene expression data has identifiers like '1007_PM_s_at' in the index\n",
"# - Gene annotation data has 'ID' column with the same format identifiers\n",
"# - Gene symbols are stored in the 'Gene Symbol' column in the annotation data\n",
"\n",
"# 2. Extract gene mapping from annotation dataframe\n",
"mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Gene Symbol')\n",
"\n",
"# 3. Convert probe-level measurements to gene-level expression data\n",
"gene_data = apply_gene_mapping(gene_data, mapping_df)\n",
"\n",
"# Print out information about the mapping process\n",
"print(f\"Original probe data shape: {gene_data.shape[0]} probes × {gene_data.shape[1]} samples\")\n",
"print(f\"Mapped gene data shape: {gene_data.shape[0]} genes × {gene_data.shape[1]} samples\")\n",
"print(\"\\nFirst 10 gene symbols after mapping:\")\n",
"print(gene_data.index[:10])\n",
"\n",
"# Verify first few rows of the mapped gene data\n",
"print(\"\\nPreview of gene expression data after mapping:\")\n",
"print(preview_df(gene_data))\n"
]
},
{
"cell_type": "markdown",
"id": "50b9c720",
"metadata": {},
"source": [
"### Step 7: Data Normalization and Linking"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "4b61ac1f",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T08:34:07.599244Z",
"iopub.status.busy": "2025-03-25T08:34:07.599136Z",
"iopub.status.idle": "2025-03-25T08:34:22.495251Z",
"shell.execute_reply": "2025-03-25T08:34:22.494868Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Normalizing gene symbols...\n",
"Gene data shape after normalization: 18622 genes × 148 samples\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Normalized gene expression data saved to ../../output/preprocess/Crohns_Disease/gene_data/GSE207022.csv\n",
"Loading clinical features...\n",
"Clinical features shape: (1, 30)\n",
"Clinical features preview:\n",
"{'CNTO1275CRD3002-20554': [1.0], 'CNTO1275CRD3002-20667': [1.0], 'CNTO1275CRD3002-20449': [1.0], 'CNTO1275CRD3002-20927': [1.0], 'CNTO1275CRD3002-20270': [1.0], 'CNTO1275CRD3002-20072': [1.0], 'CNTO1275CRD3002-20109': [1.0], 'CNTO1275CRD3002-20346': [1.0], 'HC-1': [0.0], 'HC-2': [0.0], 'HC-3': [0.0], 'HC-4': [0.0], 'HC-5': [0.0], 'HC-6': [0.0], 'HC-7': [0.0], 'HC-8': [0.0], 'HC-9': [0.0], 'HC-10': [0.0], 'HC-11': [0.0], 'HC-12': [0.0], 'HC-13': [0.0], 'HC-14': [0.0], 'HC-15': [0.0], 'HC-16': [0.0], 'HC-17': [0.0], 'HC-18': [0.0], 'HC-19': [0.0], 'HC-20': [0.0], 'HC-21': [0.0], 'HC-22': [0.0]}\n",
"\n",
"Gene data columns (first 5): ['GSM6268367', 'GSM6268368', 'GSM6268369', 'GSM6268370', 'GSM6268371']\n",
"Clinical data rows: ['Crohns_Disease']\n",
"Re-extracting clinical data from the original source...\n",
"Re-extracted clinical features preview:\n",
"{'GSM6268367': [1.0], 'GSM6268368': [1.0], 'GSM6268369': [1.0], 'GSM6268370': [1.0], 'GSM6268371': [1.0], 'GSM6268372': [1.0], 'GSM6268373': [1.0], 'GSM6268374': [1.0], 'GSM6268375': [0.0], 'GSM6268376': [0.0], 'GSM6268377': [0.0], 'GSM6268378': [0.0], 'GSM6268379': [0.0], 'GSM6268380': [0.0], 'GSM6268381': [0.0], 'GSM6268382': [0.0], 'GSM6268383': [0.0], 'GSM6268384': [0.0], 'GSM6268385': [0.0], 'GSM6268386': [0.0], 'GSM6268387': [0.0], 'GSM6268388': [0.0], 'GSM6268389': [0.0], 'GSM6268390': [0.0], 'GSM6268391': [0.0], 'GSM6268392': [0.0], 'GSM6268393': [0.0], 'GSM6268394': [0.0], 'GSM6268395': [0.0], 'GSM6268396': [0.0], 'GSM6268397': [0.0], 'GSM6268398': [1.0], 'GSM6268399': [1.0], 'GSM6268400': [1.0], 'GSM6268401': [1.0], 'GSM6268402': [1.0], 'GSM6268403': [1.0], 'GSM6268404': [1.0], 'GSM6268405': [1.0], 'GSM6268406': [1.0], 'GSM6268407': [1.0], 'GSM6268408': [1.0], 'GSM6268409': [1.0], 'GSM6268410': [1.0], 'GSM6268411': [1.0], 'GSM6268412': [1.0], 'GSM6268413': [1.0], 'GSM6268414': [1.0], 'GSM6268415': [1.0], 'GSM6268416': [1.0], 'GSM6268417': [1.0], 'GSM6268418': [1.0], 'GSM6268419': [1.0], 'GSM6268420': [1.0], 'GSM6268421': [1.0], 'GSM6268422': [1.0], 'GSM6268423': [1.0], 'GSM6268424': [1.0], 'GSM6268425': [1.0], 'GSM6268426': [1.0], 'GSM6268427': [1.0], 'GSM6268428': [1.0], 'GSM6268429': [1.0], 'GSM6268430': [1.0], 'GSM6268431': [1.0], 'GSM6268432': [1.0], 'GSM6268433': [1.0], 'GSM6268434': [1.0], 'GSM6268435': [1.0], 'GSM6268436': [1.0], 'GSM6268437': [1.0], 'GSM6268438': [1.0], 'GSM6268439': [1.0], 'GSM6268440': [1.0], 'GSM6268441': [1.0], 'GSM6268442': [1.0], 'GSM6268443': [1.0], 'GSM6268444': [1.0], 'GSM6268445': [1.0], 'GSM6268446': [1.0], 'GSM6268447': [1.0], 'GSM6268448': [1.0], 'GSM6268449': [1.0], 'GSM6268450': [1.0], 'GSM6268451': [1.0], 'GSM6268452': [1.0], 'GSM6268453': [1.0], 'GSM6268454': [1.0], 'GSM6268455': [1.0], 'GSM6268456': [1.0], 'GSM6268457': [1.0], 'GSM6268458': [1.0], 'GSM6268459': [1.0], 'GSM6268460': [1.0], 'GSM6268461': [1.0], 'GSM6268462': [1.0], 'GSM6268463': [1.0], 'GSM6268464': [1.0], 'GSM6268465': [1.0], 'GSM6268466': [1.0], 'GSM6268467': [1.0], 'GSM6268468': [1.0], 'GSM6268469': [1.0], 'GSM6268470': [1.0], 'GSM6268471': [1.0], 'GSM6268472': [1.0], 'GSM6268473': [1.0], 'GSM6268474': [1.0], 'GSM6268475': [1.0], 'GSM6268476': [1.0], 'GSM6268477': [1.0], 'GSM6268478': [1.0], 'GSM6268479': [1.0], 'GSM6268480': [1.0], 'GSM6268481': [1.0], 'GSM6268482': [1.0], 'GSM6268483': [1.0], 'GSM6268484': [1.0], 'GSM6268485': [1.0], 'GSM6268486': [1.0], 'GSM6268487': [1.0], 'GSM6268488': [1.0], 'GSM6268489': [1.0], 'GSM6268490': [1.0], 'GSM6268491': [1.0], 'GSM6268492': [1.0], 'GSM6268493': [1.0], 'GSM6268494': [1.0], 'GSM6268495': [1.0], 'GSM6268496': [1.0], 'GSM6268497': [1.0], 'GSM6268498': [1.0], 'GSM6268499': [1.0], 'GSM6268500': [1.0], 'GSM6268501': [1.0], 'GSM6268502': [1.0], 'GSM6268503': [1.0], 'GSM6268504': [1.0], 'GSM6268505': [1.0], 'GSM6268506': [1.0], 'GSM6268507': [1.0], 'GSM6268508': [1.0], 'GSM6268509': [1.0], 'GSM6268510': [1.0], 'GSM6268511': [1.0], 'GSM6268512': [1.0], 'GSM6268513': [1.0], 'GSM6268514': [1.0]}\n",
"Re-extracted clinical data shape: (1, 148)\n",
"Updated clinical features saved to ../../output/preprocess/Crohns_Disease/clinical_data/GSE207022.csv\n",
"Linking clinical and genetic data...\n",
"Linked data shape: (148, 18623)\n",
"Handling missing values...\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Data shape after handling missing values: (148, 18623)\n",
"\n",
"Checking for bias in feature variables:\n",
"For the feature 'Crohns_Disease', the least common label is '0.0' with 23 occurrences. This represents 15.54% of the dataset.\n",
"The distribution of the feature 'Crohns_Disease' in this dataset is fine.\n",
"\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Linked data saved to ../../output/preprocess/Crohns_Disease/GSE207022.csv\n",
"Final dataset shape: (148, 18623)\n"
]
}
],
"source": [
"# 1. Normalize gene symbols in the gene expression data\n",
"print(\"Normalizing gene symbols...\")\n",
"gene_data_normalized = normalize_gene_symbols_in_index(gene_data)\n",
"print(f\"Gene data shape after normalization: {gene_data_normalized.shape[0]} genes × {gene_data_normalized.shape[1]} samples\")\n",
"\n",
"# Save the normalized gene data\n",
"os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
"gene_data_normalized.to_csv(out_gene_data_file)\n",
"print(f\"Normalized gene expression data saved to {out_gene_data_file}\")\n",
"\n",
"# 2. Read the clinical features from the previously saved file\n",
"print(\"Loading clinical features...\")\n",
"clinical_features = pd.read_csv(out_clinical_data_file, index_col=0)\n",
"print(f\"Clinical features shape: {clinical_features.shape}\")\n",
"print(\"Clinical features preview:\")\n",
"print(preview_df(clinical_features))\n",
"\n",
"# First, let's look at the column names of both datasets to ensure proper linking\n",
"print(\"\\nGene data columns (first 5):\", gene_data_normalized.columns[:5].tolist())\n",
"print(\"Clinical data rows:\", clinical_features.index.tolist())\n",
"\n",
"# Since we've detected issues with data linking, let's manually inspect the data formats\n",
"# and make necessary adjustments for proper alignment\n",
"if clinical_features.shape[0] == 0:\n",
" print(\"Error: Clinical features dataframe is empty. Cannot proceed with linking.\")\n",
" is_usable = validate_and_save_cohort_info(\n",
" is_final=True,\n",
" cohort=cohort,\n",
" info_path=json_path,\n",
" is_gene_available=True,\n",
" is_trait_available=False,\n",
" is_biased=True,\n",
" df=pd.DataFrame(),\n",
" note=\"Clinical features dataframe is empty, cannot link with gene data.\"\n",
" )\n",
"else:\n",
" # Re-extract the clinical data directly from the matrix file\n",
" print(\"Re-extracting clinical data from the original source...\")\n",
" # Get background information and clinical data again\n",
" background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
" clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
" background_info, original_clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
" \n",
" # Extract clinical features properly\n",
" selected_clinical_df = geo_select_clinical_features(\n",
" clinical_df=original_clinical_data,\n",
" trait=trait,\n",
" trait_row=trait_row,\n",
" convert_trait=convert_trait,\n",
" age_row=age_row,\n",
" convert_age=convert_age,\n",
" gender_row=gender_row,\n",
" convert_gender=convert_gender\n",
" )\n",
" \n",
" print(\"Re-extracted clinical features preview:\")\n",
" print(preview_df(selected_clinical_df))\n",
" print(f\"Re-extracted clinical data shape: {selected_clinical_df.shape}\")\n",
" \n",
" # Save the properly extracted clinical features\n",
" selected_clinical_df.to_csv(out_clinical_data_file)\n",
" print(f\"Updated clinical features saved to {out_clinical_data_file}\")\n",
" \n",
" # 2. Link clinical and genetic data using the re-extracted clinical data\n",
" print(\"Linking clinical and genetic data...\")\n",
" linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data_normalized)\n",
" print(f\"Linked data shape: {linked_data.shape}\")\n",
" \n",
" # Check if the linked data has adequate data\n",
" if linked_data.shape[0] == 0 or linked_data.shape[1] <= 4: # 4 is an arbitrary small number\n",
" print(\"Error: Linked data has insufficient samples or features. Dataset cannot be processed further.\")\n",
" is_usable = validate_and_save_cohort_info(\n",
" is_final=True,\n",
" cohort=cohort,\n",
" info_path=json_path,\n",
" is_gene_available=True,\n",
" is_trait_available=True,\n",
" is_biased=True,\n",
" df=linked_data,\n",
" note=\"Failed to properly link gene expression data with clinical features.\"\n",
" )\n",
" else:\n",
" # 3. Handle missing values systematically\n",
" print(\"Handling missing values...\")\n",
" linked_data_clean = handle_missing_values(linked_data, trait_col=trait)\n",
" print(f\"Data shape after handling missing values: {linked_data_clean.shape}\")\n",
" \n",
" # Check if there are still samples after missing value handling\n",
" if linked_data_clean.shape[0] == 0:\n",
" print(\"Error: No samples remain after handling missing values.\")\n",
" is_usable = validate_and_save_cohort_info(\n",
" is_final=True,\n",
" cohort=cohort,\n",
" info_path=json_path,\n",
" is_gene_available=True,\n",
" is_trait_available=True,\n",
" is_biased=True,\n",
" df=pd.DataFrame(),\n",
" note=\"All samples were removed during missing value handling.\"\n",
" )\n",
" else:\n",
" # 4. Check if the dataset is biased\n",
" print(\"\\nChecking for bias in feature variables:\")\n",
" is_biased, linked_data_final = judge_and_remove_biased_features(linked_data_clean, trait)\n",
" \n",
" # 5. Conduct final quality validation\n",
" is_usable = validate_and_save_cohort_info(\n",
" is_final=True,\n",
" cohort=cohort,\n",
" info_path=json_path,\n",
" is_gene_available=True,\n",
" is_trait_available=True,\n",
" is_biased=is_biased,\n",
" df=linked_data_final,\n",
" note=\"Dataset contains gene expression data for Crohn's Disease subtypes (penetrating vs stricturing).\"\n",
" )\n",
" \n",
" # 6. Save linked data if usable\n",
" if is_usable:\n",
" os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
" linked_data_final.to_csv(out_data_file)\n",
" print(f\"Linked data saved to {out_data_file}\")\n",
" print(f\"Final dataset shape: {linked_data_final.shape}\")\n",
" else:\n",
" print(\"Dataset deemed not usable for trait association studies, linked data not saved.\")"
]
}
],
"metadata": {
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.16"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|