File size: 27,613 Bytes
e4183cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "baa6ec5b",
   "metadata": {},
   "outputs": [],
   "source": [
    "import sys\n",
    "import os\n",
    "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
    "\n",
    "# Path Configuration\n",
    "from tools.preprocess import *\n",
    "\n",
    "# Processing context\n",
    "trait = \"Crohns_Disease\"\n",
    "cohort = \"GSE66407\"\n",
    "\n",
    "# Input paths\n",
    "in_trait_dir = \"../../input/GEO/Crohns_Disease\"\n",
    "in_cohort_dir = \"../../input/GEO/Crohns_Disease/GSE66407\"\n",
    "\n",
    "# Output paths\n",
    "out_data_file = \"../../output/preprocess/Crohns_Disease/GSE66407.csv\"\n",
    "out_gene_data_file = \"../../output/preprocess/Crohns_Disease/gene_data/GSE66407.csv\"\n",
    "out_clinical_data_file = \"../../output/preprocess/Crohns_Disease/clinical_data/GSE66407.csv\"\n",
    "json_path = \"../../output/preprocess/Crohns_Disease/cohort_info.json\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "78122d19",
   "metadata": {},
   "source": [
    "### Step 1: Initial Data Loading"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "badbdfd4",
   "metadata": {},
   "outputs": [],
   "source": [
    "from tools.preprocess import *\n",
    "# 1. Identify the paths to the SOFT file and the matrix file\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. Read the matrix file to obtain background information and sample characteristics data\n",
    "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
    "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
    "background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
    "\n",
    "# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
    "sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
    "\n",
    "# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
    "print(\"Background Information:\")\n",
    "print(background_info)\n",
    "print(\"Sample Characteristics Dictionary:\")\n",
    "print(sample_characteristics_dict)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "69899cd0",
   "metadata": {},
   "source": [
    "### Step 2: Dataset Analysis and Clinical Feature Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "2f263e62",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Analysis of dataset to determine gene expression data availability and clinical feature extraction\n",
    "import pandas as pd\n",
    "\n",
    "# 1. Gene Expression Data Availability \n",
    "# Based on the background information, this dataset contains gut biopsies with transcriptome analysis\n",
    "# This indicates gene expression data, not just miRNA or methylation\n",
    "is_gene_available = True\n",
    "\n",
    "# 2. Variable Availability and Data Type Conversion\n",
    "# 2.1 Data Availability\n",
    "# Trait (Crohn's Disease) - From key 3 \"diagnosis: CD\"\n",
    "trait_row = 3\n",
    "\n",
    "# Age - From key 2 \"age: XX\"\n",
    "age_row = 2\n",
    "\n",
    "# Gender - Not available in the sample characteristics\n",
    "gender_row = None\n",
    "\n",
    "# 2.2 Data Type Conversion Functions\n",
    "def convert_trait(value):\n",
    "    \"\"\"Convert diagnosis information to binary trait value (0: Control, 1: CD).\"\"\"\n",
    "    if pd.isna(value):\n",
    "        return None\n",
    "    \n",
    "    # Split by colon and get the value\n",
    "    if ':' in value:\n",
    "        value = value.split(':', 1)[1].strip()\n",
    "    \n",
    "    if value == 'CD':\n",
    "        return 1  # Has Crohn's Disease\n",
    "    elif value == 'Control':\n",
    "        return 0  # Control/Healthy\n",
    "    else:\n",
    "        return None  # UC or other diagnoses\n",
    "\n",
    "def convert_age(value):\n",
    "    \"\"\"Convert age information to continuous value.\"\"\"\n",
    "    if pd.isna(value):\n",
    "        return None\n",
    "    \n",
    "    # Split by colon and get the value\n",
    "    if ':' in value:\n",
    "        value = value.split(':', 1)[1].strip()\n",
    "    \n",
    "    try:\n",
    "        return float(value)\n",
    "    except:\n",
    "        return None\n",
    "\n",
    "def convert_gender(value):\n",
    "    \"\"\"Placeholder function for gender conversion, though gender data is not available.\"\"\"\n",
    "    return None\n",
    "\n",
    "# 3. Save Metadata - initial filtering\n",
    "# trait_row is not None, so trait data is available\n",
    "validate_and_save_cohort_info(\n",
    "    is_final=False,\n",
    "    cohort=cohort,\n",
    "    info_path=json_path,\n",
    "    is_gene_available=is_gene_available,\n",
    "    is_trait_available=(trait_row is not None)\n",
    ")\n",
    "\n",
    "# 4. Clinical Feature Extraction (since trait_row is not None)\n",
    "# Use a safer approach to parse the sample characteristics dictionary from the previous output\n",
    "sample_char_dict = {0: ['patient: 10', 'patient: 53', 'patient: 22', 'patient: 91', 'patient: 23', 'patient: 96', 'patient: 50', 'patient: 9', 'patient: 25', 'patient: 97', 'patient: 12', 'patient: 52', 'patient: 101', 'patient: 29', 'patient: 51', 'patient: 107', 'patient: 43', 'patient: 11', 'patient: 109', 'patient: 40', 'patient: 113', 'patient: 116', 'patient: 39', 'patient: 120', 'patient: 34', 'patient: 48', 'patient: 59', 'patient: 65', 'patient: 99', 'patient: 28'], \n",
    "                    1: ['biopsy: 2', 'biopsy: 3', 'biopsy: 6', 'biopsy: 5', 'biopsy: 1', 'biopsy: 4', 'biopsy: 7', 'biopsy: 8', 'biopsy: G1', 'biopsy: 9', 'biopsy: 1A', 'biopsy: 1B'], \n",
    "                    2: ['age: 37', 'age: 18', 'age: 19', 'age: 54', 'age: 70', 'age: 22', 'age: 45', 'age: 62', 'age: 31', 'age: 39', 'age: 67', 'age: 24', 'age: 59', 'age: 20', 'age: 77', 'age: 68', 'age: 41', 'age: 50', 'age: 35', 'age: 36', 'age: 43', 'age: 52', 'age: 21', 'age: 63', 'age: 29', 'age: 25', 'age: 26', 'age: 28', 'age: 53', 'age: 69'], \n",
    "                    3: ['diagnosis: Control', 'diagnosis: CD', 'diagnosis: UC', None, 'inflammation: non', 'inflammation: yes'], \n",
    "                    4: ['gastroscopy: FALSE', 'gastroscopy: TRUE', None, 'tissue: transversum', 'tissue: sigmoideum'], \n",
    "                    5: ['inflammation: non', 'inflammation: yes', None, 'tissue: descendens', 'tissue: sigmoideum', 'tissue: rectum'], \n",
    "                    6: ['tissue: ascendens', 'tissue: sigmoideum', 'tissue: ileum', 'tissue: rectum', 'tissue: descendens', 'tissue: transversum', 'tissue: coecum', None, 'tissue: bulbus durodenum', 'tissue: valvula']}\n",
    "\n",
    "# Create clinical data DataFrame properly\n",
    "# We need to account for the fact that each list in the dictionary may have different lengths\n",
    "# Find the maximum length\n",
    "max_length = max(len(values) for values in sample_char_dict.values())\n",
    "\n",
    "# Pad shorter lists with NaN\n",
    "padded_dict = {}\n",
    "for key, values in sample_char_dict.items():\n",
    "    padded_values = values + [None] * (max_length - len(values))\n",
    "    padded_dict[key] = padded_values\n",
    "\n",
    "# Create DataFrame from padded dictionary\n",
    "clinical_data = pd.DataFrame(padded_dict)\n",
    "\n",
    "# Extract clinical features\n",
    "clinical_features = geo_select_clinical_features(\n",
    "    clinical_df=clinical_data,\n",
    "    trait=trait,\n",
    "    trait_row=trait_row,\n",
    "    convert_trait=convert_trait,\n",
    "    age_row=age_row,\n",
    "    convert_age=convert_age,\n",
    "    gender_row=gender_row,\n",
    "    convert_gender=convert_gender\n",
    ")\n",
    "\n",
    "# Preview clinical features\n",
    "preview_clinical = preview_df(clinical_features)\n",
    "print(\"Preview of extracted clinical features:\")\n",
    "print(preview_clinical)\n",
    "\n",
    "# Save clinical features to CSV\n",
    "clinical_features.to_csv(out_clinical_data_file)\n",
    "print(f\"Clinical features saved to {out_clinical_data_file}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "e97fadc0",
   "metadata": {},
   "source": [
    "### Step 3: Gene Data Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "c1012839",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. Re-identify the SOFT and matrix files to ensure we have the correct paths\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. Extract the gene expression data from the matrix file\n",
    "gene_data = get_genetic_data(matrix_file)\n",
    "\n",
    "# 3. Print the first 20 row IDs (gene or probe identifiers)\n",
    "print(\"\\nFirst 20 gene/probe identifiers:\")\n",
    "print(gene_data.index[:20])\n",
    "\n",
    "# 4. Print the dimensions of the gene expression data\n",
    "print(f\"\\nGene data dimensions: {gene_data.shape[0]} genes × {gene_data.shape[1]} samples\")\n",
    "\n",
    "# Note: we keep is_gene_available as True since we successfully extracted gene expression data\n",
    "is_gene_available = True\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "d07b021e",
   "metadata": {},
   "source": [
    "### Step 4: Gene Identifier Review"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "b0344dfb",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Looking at the gene identifiers provided, they appear to be Ensembl gene IDs with an \"_at\" suffix\n",
    "# Ensembl IDs typically start with \"ENSG\" for human genes, followed by a unique number\n",
    "# These are not standard human gene symbols (like BRCA1, TP53, etc.)\n",
    "# Therefore, they need to be mapped to standard gene symbols for better interpretability\n",
    "\n",
    "requires_gene_mapping = True\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "a6d337dc",
   "metadata": {},
   "source": [
    "### Step 5: Gene Annotation"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "1ddbc0d3",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. First get the file paths using geo_get_relevant_filepaths function\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.\n",
    "gene_annotation = get_gene_annotation(soft_file)\n",
    "\n",
    "# 3. Use the 'preview_df' function from the library to preview the data and print out the results.\n",
    "print(\"Gene annotation preview:\")\n",
    "print(preview_df(gene_annotation))\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "d5e080bc",
   "metadata": {},
   "source": [
    "### Step 6: Gene Identifier Mapping"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "50003d42",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. Looking at the gene annotation preview, we need to extract gene symbols from 'Description'\n",
    "# Example: \"tetraspanin 6 [Source:HGNC Symbol;Acc:11858]\" should yield \"TSPAN6\"\n",
    "\n",
    "# Let's check the Description field format\n",
    "print(\"\\nSample Description fields:\")\n",
    "print(gene_annotation['Description'].head(10).tolist())\n",
    "\n",
    "# Create a function to extract gene symbols from the Description field\n",
    "def extract_gene_name(description):\n",
    "    \"\"\"Extract gene name from the description field - everything before [Source: part\"\"\"\n",
    "    if pd.isna(description):\n",
    "        return None\n",
    "    \n",
    "    # Extract the gene name - everything before [Source: part\n",
    "    if '[Source:' in description:\n",
    "        gene_name = description.split('[Source:')[0].strip()\n",
    "        return gene_name\n",
    "    \n",
    "    return None\n",
    "\n",
    "# Apply the function to extract gene names\n",
    "gene_annotation['Gene_Name'] = gene_annotation['Description'].apply(extract_gene_name)\n",
    "\n",
    "# Print some examples to verify extraction\n",
    "print(\"\\nSample Gene Name extractions:\")\n",
    "sample_extractions = gene_annotation[['ID', 'Description', 'Gene_Name']].head(10)\n",
    "print(sample_extractions)\n",
    "\n",
    "# Use extract_human_gene_symbols to get likely gene symbols from the gene names\n",
    "gene_annotation['Symbol'] = gene_annotation['Gene_Name'].apply(extract_human_gene_symbols)\n",
    "\n",
    "# Check which rows have symbols\n",
    "has_symbols = gene_annotation['Symbol'].apply(lambda x: len(x) > 0 if isinstance(x, list) else False)\n",
    "print(f\"\\nRows with extracted symbols: {has_symbols.sum()} out of {len(gene_annotation)}\")\n",
    "\n",
    "# Create an exploded dataframe for mapping\n",
    "mapping_df = gene_annotation[['ID', 'Symbol']].copy()\n",
    "# Convert empty lists to None to make dropna work correctly\n",
    "mapping_df.loc[mapping_df['Symbol'].apply(lambda x: isinstance(x, list) and len(x) == 0), 'Symbol'] = None\n",
    "# Explode the Symbol column to handle cases where multiple symbols were extracted\n",
    "mapping_df = mapping_df.explode('Symbol')\n",
    "mapping_df = mapping_df.dropna(subset=['Symbol'])\n",
    "mapping_df = mapping_df.rename(columns={'Symbol': 'Gene'})\n",
    "\n",
    "# Print the shape of the mapping dataframe\n",
    "print(f\"\\nMapping dataframe shape: {mapping_df.shape}\")\n",
    "print(\"\\nSample mappings:\")\n",
    "print(mapping_df.head(10))\n",
    "\n",
    "# Apply the mapping to convert probe-level data to gene expression data\n",
    "gene_data_mapped = apply_gene_mapping(gene_data, mapping_df)\n",
    "\n",
    "# Print the shape of the resulting gene expression data\n",
    "print(f\"\\nAfter mapping, gene data dimensions: {gene_data_mapped.shape[0]} genes × {gene_data_mapped.shape[1]} samples\")\n",
    "\n",
    "# Preview the first few gene symbols\n",
    "if gene_data_mapped.shape[0] > 0:\n",
    "    print(\"\\nFirst few gene symbols after mapping:\")\n",
    "    print(gene_data_mapped.index[:10])\n",
    "else:\n",
    "    print(\"\\nWarning: No genes were mapped. Check mapping process.\")\n",
    "\n",
    "# Save the gene expression data\n",
    "gene_data_mapped.to_csv(out_gene_data_file)\n",
    "print(f\"Gene expression data saved to {out_gene_data_file}\")\n",
    "\n",
    "# Update the gene_data variable for subsequent steps\n",
    "gene_data = gene_data_mapped\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "6fe8af0e",
   "metadata": {},
   "source": [
    "### Step 7: Data Normalization and Linking"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "9980d133",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. Re-extract clinical data from the SOFT file to ensure we have properly structured data\n",
    "print(\"Re-extracting clinical data from the SOFT file...\")\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# Get raw clinical data\n",
    "background_info, clinical_df = get_background_and_clinical_data(matrix_file)\n",
    "\n",
    "# Transpose the clinical data to have samples as columns\n",
    "clinical_df_t = clinical_df.T\n",
    "# First row contains the geo accessions, use it as column names\n",
    "clinical_df_t.columns = clinical_df_t.iloc[0]\n",
    "# Remove the first row that has been used as column names\n",
    "clinical_df_t = clinical_df_t.iloc[1:]\n",
    "\n",
    "# Now extract relevant clinical features (for Crohn's Disease and age)\n",
    "trait_values = []\n",
    "if trait_row is not None:\n",
    "    for col in clinical_df_t.columns:\n",
    "        trait_val = convert_trait(clinical_df_t.iloc[trait_row-1, col])  # Adjust index for 0-based\n",
    "        trait_values.append(trait_val)\n",
    "\n",
    "age_values = []\n",
    "if age_row is not None:\n",
    "    for col in clinical_df_t.columns:\n",
    "        age_val = convert_age(clinical_df_t.iloc[age_row-1, col])  # Adjust index for 0-based\n",
    "        age_values.append(age_val)\n",
    "\n",
    "# Create proper clinical features dataframe with samples as rows\n",
    "sample_ids = clinical_df_t.columns.tolist()\n",
    "clinical_features = pd.DataFrame()\n",
    "\n",
    "if trait_values:\n",
    "    clinical_features[trait] = trait_values\n",
    "if age_values:\n",
    "    clinical_features['Age'] = age_values\n",
    "\n",
    "# Set index to sample IDs\n",
    "clinical_features.index = sample_ids\n",
    "print(f\"Re-extracted clinical features shape: {clinical_features.shape}\")\n",
    "print(\"Clinical features preview:\")\n",
    "print(clinical_features.head())\n",
    "\n",
    "# Save the improved clinical features\n",
    "os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "clinical_features.to_csv(out_clinical_data_file)\n",
    "print(f\"Improved clinical features saved to {out_clinical_data_file}\")\n",
    "\n",
    "# Check if clinical features were successfully extracted with non-null values\n",
    "if clinical_features.empty or clinical_features[trait].isnull().all():\n",
    "    print(\"Failed to extract valid clinical features with trait values. Dataset cannot be processed further.\")\n",
    "    is_usable = validate_and_save_cohort_info(\n",
    "        is_final=True,\n",
    "        cohort=cohort,\n",
    "        info_path=json_path,\n",
    "        is_gene_available=True,\n",
    "        is_trait_available=False,\n",
    "        is_biased=True,\n",
    "        df=pd.DataFrame(),\n",
    "        note=\"Valid clinical features with trait values could not be extracted.\"\n",
    "    )\n",
    "else:\n",
    "    # 2. Link clinical and genetic data\n",
    "    print(\"Linking clinical and genetic data...\")\n",
    "    \n",
    "    # Transpose gene_data to have samples as rows and genes as columns\n",
    "    gene_data_t = gene_data.T\n",
    "    \n",
    "    # Keep only common samples between clinical and gene data\n",
    "    common_samples = list(set(clinical_features.index) & set(gene_data_t.index))\n",
    "    print(f\"Common samples between clinical and gene data: {len(common_samples)}\")\n",
    "    \n",
    "    if len(common_samples) == 0:\n",
    "        print(\"No common samples between clinical and gene data. Dataset cannot be processed further.\")\n",
    "        is_usable = validate_and_save_cohort_info(\n",
    "            is_final=True,\n",
    "            cohort=cohort,\n",
    "            info_path=json_path,\n",
    "            is_gene_available=True,\n",
    "            is_trait_available=True,\n",
    "            is_biased=True,\n",
    "            df=pd.DataFrame(),\n",
    "            note=\"No common samples between clinical and gene data.\"\n",
    "        )\n",
    "    else:\n",
    "        # Filter both datasets to only include common samples\n",
    "        clinical_common = clinical_features.loc[common_samples]\n",
    "        gene_data_common = gene_data_t.loc[common_samples]\n",
    "        \n",
    "        # Merge the datasets\n",
    "        linked_data = pd.concat([clinical_common, gene_data_common], axis=1)\n",
    "        print(f\"Linked data shape: {linked_data.shape}\")\n",
    "        \n",
    "        # 3. Handle missing values systematically\n",
    "        linked_data = handle_missing_values(linked_data, trait_col=trait)\n",
    "        print(f\"Data shape after handling missing values: {linked_data.shape}\")\n",
    "        \n",
    "        # Check if there are still samples after missing value handling\n",
    "        if linked_data.shape[0] == 0:\n",
    "            print(\"Error: No samples remain after handling missing values.\")\n",
    "            is_usable = validate_and_save_cohort_info(\n",
    "                is_final=True,\n",
    "                cohort=cohort,\n",
    "                info_path=json_path,\n",
    "                is_gene_available=True,\n",
    "                is_trait_available=True,\n",
    "                is_biased=True,\n",
    "                df=pd.DataFrame(),\n",
    "                note=\"All samples were removed during missing value handling.\"\n",
    "            )\n",
    "        else:\n",
    "            # 4. Check if the dataset is biased\n",
    "            print(\"\\nChecking for bias in feature variables:\")\n",
    "            is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)\n",
    "            \n",
    "            # 5. Conduct final quality validation\n",
    "            is_usable = validate_and_save_cohort_info(\n",
    "                is_final=True,\n",
    "                cohort=cohort,\n",
    "                info_path=json_path,\n",
    "                is_gene_available=True,\n",
    "                is_trait_available=True,\n",
    "                is_biased=is_biased,\n",
    "                df=linked_data,\n",
    "                note=\"Dataset contains gene expression data for Crohn's Disease.\"\n",
    "            )\n",
    "            \n",
    "            # 6. Save linked data if usable\n",
    "            if is_usable:\n",
    "                os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
    "                linked_data.to_csv(out_data_file)\n",
    "                print(f\"Linked data saved to {out_data_file}\")\n",
    "            else:\n",
    "                print(\"Dataset deemed not usable for trait association studies, linked data not saved.\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "1b21d50f",
   "metadata": {},
   "source": [
    "### Step 8: Data Normalization and Linking"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "79d61edb",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. Skip gene symbol normalization and use the accession numbers directly\n",
    "print(\"Processing gene expression data...\")\n",
    "# Don't normalize - these are GenBank accessions, not gene symbols\n",
    "gene_data_normalized = gene_data  # Use the original gene data with accession numbers\n",
    "\n",
    "# Save the gene data (without normalization)\n",
    "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
    "gene_data.to_csv(out_gene_data_file)\n",
    "print(f\"Gene expression data saved to {out_gene_data_file}\")\n",
    "print(f\"Gene data shape: {gene_data.shape[0]} genes × {gene_data.shape[1]} samples\")\n",
    "\n",
    "# 2. Extract clinical features from scratch\n",
    "print(\"Extracting clinical features from original clinical data...\")\n",
    "clinical_features = geo_select_clinical_features(\n",
    "    clinical_data, \n",
    "    trait, \n",
    "    trait_row,\n",
    "    convert_trait,\n",
    "    age_row,\n",
    "    convert_age,\n",
    "    gender_row,\n",
    "    convert_gender\n",
    ")\n",
    "\n",
    "# Save the extracted clinical features\n",
    "os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "clinical_features.to_csv(out_clinical_data_file)\n",
    "print(f\"Clinical features saved to {out_clinical_data_file}\")\n",
    "\n",
    "print(\"Clinical features preview:\")\n",
    "print(preview_df(clinical_features))\n",
    "\n",
    "# Check if clinical features were successfully extracted\n",
    "if clinical_features.empty:\n",
    "    print(\"Failed to extract clinical features. Dataset cannot be processed further.\")\n",
    "    is_usable = validate_and_save_cohort_info(\n",
    "        is_final=True,\n",
    "        cohort=cohort,\n",
    "        info_path=json_path,\n",
    "        is_gene_available=True,\n",
    "        is_trait_available=False,\n",
    "        is_biased=True,\n",
    "        df=pd.DataFrame(),\n",
    "        note=\"Clinical features could not be extracted from the dataset.\"\n",
    "    )\n",
    "    print(\"Dataset deemed not usable due to lack of clinical features.\")\n",
    "else:\n",
    "    # 2. Link clinical and genetic data\n",
    "    print(\"Linking clinical and genetic data...\")\n",
    "    linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data)\n",
    "    print(f\"Linked data shape: {linked_data.shape}\")\n",
    "\n",
    "    # Check if the linked data has gene features\n",
    "    if linked_data.shape[1] <= 1:\n",
    "        print(\"Error: Linked data has no gene features. Dataset cannot be processed further.\")\n",
    "        is_usable = validate_and_save_cohort_info(\n",
    "            is_final=True,\n",
    "            cohort=cohort,\n",
    "            info_path=json_path,\n",
    "            is_gene_available=False,\n",
    "            is_trait_available=True,\n",
    "            is_biased=True,\n",
    "            df=linked_data,\n",
    "            note=\"Failed to link gene expression data with clinical features.\"\n",
    "        )\n",
    "    else:\n",
    "        # 3. Handle missing values systematically\n",
    "        linked_data = handle_missing_values(linked_data, trait_col=trait)\n",
    "        print(f\"Data shape after handling missing values: {linked_data.shape}\")\n",
    "        \n",
    "        # Check if there are still samples after missing value handling\n",
    "        if linked_data.shape[0] == 0:\n",
    "            print(\"Error: No samples remain after handling missing values.\")\n",
    "            is_usable = validate_and_save_cohort_info(\n",
    "                is_final=True,\n",
    "                cohort=cohort,\n",
    "                info_path=json_path,\n",
    "                is_gene_available=True,\n",
    "                is_trait_available=True,\n",
    "                is_biased=True,\n",
    "                df=pd.DataFrame(),\n",
    "                note=\"All samples were removed during missing value handling.\"\n",
    "            )\n",
    "        else:\n",
    "            # 4. Check if the dataset is biased\n",
    "            print(\"\\nChecking for bias in feature variables:\")\n",
    "            is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)\n",
    "\n",
    "            # 5. Conduct final quality validation\n",
    "            is_usable = validate_and_save_cohort_info(\n",
    "                is_final=True,\n",
    "                cohort=cohort,\n",
    "                info_path=json_path,\n",
    "                is_gene_available=True,\n",
    "                is_trait_available=True,\n",
    "                is_biased=is_biased,\n",
    "                df=linked_data,\n",
    "                note=\"Dataset contains gene expression data for Crohn's Disease patients and healthy controls.\"\n",
    "            )\n",
    "\n",
    "            # 6. Save linked data if usable\n",
    "            if is_usable:\n",
    "                os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
    "                linked_data.to_csv(out_data_file)\n",
    "                print(f\"Linked data saved to {out_data_file}\")\n",
    "            else:\n",
    "                print(\"Dataset deemed not usable for trait association studies, linked data not saved.\")"
   ]
  }
 ],
 "metadata": {},
 "nbformat": 4,
 "nbformat_minor": 5
}