File size: 6,528 Bytes
e4183cf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "c8ee81c7",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T08:34:46.541760Z",
"iopub.status.busy": "2025-03-25T08:34:46.541580Z",
"iopub.status.idle": "2025-03-25T08:34:46.702384Z",
"shell.execute_reply": "2025-03-25T08:34:46.702023Z"
}
},
"outputs": [],
"source": [
"import sys\n",
"import os\n",
"sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
"\n",
"# Path Configuration\n",
"from tools.preprocess import *\n",
"\n",
"# Processing context\n",
"trait = \"Crohns_Disease\"\n",
"\n",
"# Input paths\n",
"tcga_root_dir = \"../../input/TCGA\"\n",
"\n",
"# Output paths\n",
"out_data_file = \"../../output/preprocess/Crohns_Disease/TCGA.csv\"\n",
"out_gene_data_file = \"../../output/preprocess/Crohns_Disease/gene_data/TCGA.csv\"\n",
"out_clinical_data_file = \"../../output/preprocess/Crohns_Disease/clinical_data/TCGA.csv\"\n",
"json_path = \"../../output/preprocess/Crohns_Disease/cohort_info.json\"\n"
]
},
{
"cell_type": "markdown",
"id": "ee5993de",
"metadata": {},
"source": [
"### Step 1: Initial Data Loading"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "df8f45fa",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T08:34:46.703798Z",
"iopub.status.busy": "2025-03-25T08:34:46.703660Z",
"iopub.status.idle": "2025-03-25T08:34:46.708617Z",
"shell.execute_reply": "2025-03-25T08:34:46.708316Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Available TCGA subdirectories: ['TCGA_Liver_Cancer_(LIHC)', 'TCGA_Lower_Grade_Glioma_(LGG)', 'TCGA_lower_grade_glioma_and_glioblastoma_(GBMLGG)', 'TCGA_Lung_Adenocarcinoma_(LUAD)', 'TCGA_Lung_Cancer_(LUNG)', 'TCGA_Lung_Squamous_Cell_Carcinoma_(LUSC)', 'TCGA_Melanoma_(SKCM)', 'TCGA_Mesothelioma_(MESO)', 'TCGA_Ocular_melanomas_(UVM)', 'TCGA_Ovarian_Cancer_(OV)', 'TCGA_Pancreatic_Cancer_(PAAD)', 'TCGA_Pheochromocytoma_Paraganglioma_(PCPG)', 'TCGA_Prostate_Cancer_(PRAD)', 'TCGA_Rectal_Cancer_(READ)', 'TCGA_Sarcoma_(SARC)', 'TCGA_Stomach_Cancer_(STAD)', 'TCGA_Testicular_Cancer_(TGCT)', 'TCGA_Thymoma_(THYM)', 'TCGA_Thyroid_Cancer_(THCA)', 'TCGA_Uterine_Carcinosarcoma_(UCS)', '.DS_Store', 'CrawlData.ipynb', 'TCGA_Acute_Myeloid_Leukemia_(LAML)', 'TCGA_Adrenocortical_Cancer_(ACC)', 'TCGA_Bile_Duct_Cancer_(CHOL)', 'TCGA_Bladder_Cancer_(BLCA)', 'TCGA_Breast_Cancer_(BRCA)', 'TCGA_Cervical_Cancer_(CESC)', 'TCGA_Colon_and_Rectal_Cancer_(COADREAD)', 'TCGA_Colon_Cancer_(COAD)', 'TCGA_Endometrioid_Cancer_(UCEC)', 'TCGA_Esophageal_Cancer_(ESCA)', 'TCGA_Glioblastoma_(GBM)', 'TCGA_Head_and_Neck_Cancer_(HNSC)', 'TCGA_Kidney_Chromophobe_(KICH)', 'TCGA_Kidney_Clear_Cell_Carcinoma_(KIRC)', 'TCGA_Kidney_Papillary_Cell_Carcinoma_(KIRP)', 'TCGA_Large_Bcell_Lymphoma_(DLBC)']\n",
"Potential Crohns_Disease-related directories found: []\n",
"No TCGA subdirectory contains terms directly related to Crohns_Disease.\n",
"TCGA is primarily a cancer genomics database and may not have specific data for this inflammatory condition.\n",
"Task completed: Crohns_Disease data not available in TCGA dataset.\n"
]
}
],
"source": [
"import os\n",
"\n",
"# Step 1: Look for directories related to Ankylosing Spondylitis (inflammatory arthritis affecting the spine)\n",
"tcga_subdirs = os.listdir(tcga_root_dir)\n",
"print(f\"Available TCGA subdirectories: {tcga_subdirs}\")\n",
"\n",
"# Check if any directories contain relevant terms to Ankylosing Spondylitis\n",
"as_related_terms = [\"spondylitis\", \"arthritis\", \"inflammatory\", \"spine\", \"joint\", \"sacroiliac\", \"rheumatic\"]\n",
"potential_dirs = []\n",
"\n",
"for directory in tcga_subdirs:\n",
" if any(term.lower() in directory.lower() for term in as_related_terms):\n",
" potential_dirs.append(directory)\n",
"\n",
"print(f\"Potential {trait}-related directories found: {potential_dirs}\")\n",
"\n",
"if potential_dirs:\n",
" # Select the most specific match if found\n",
" target_dir = potential_dirs[0]\n",
" target_path = os.path.join(tcga_root_dir, target_dir)\n",
" \n",
" print(f\"Selected directory: {target_dir}\")\n",
" \n",
" # Get the clinical and genetic data file paths\n",
" clinical_path, genetic_path = tcga_get_relevant_filepaths(target_path)\n",
" \n",
" # Load the datasets\n",
" clinical_df = pd.read_csv(clinical_path, sep='\\t', index_col=0)\n",
" genetic_df = pd.read_csv(genetic_path, sep='\\t', index_col=0)\n",
" \n",
" # Print column names of clinical data\n",
" print(\"\\nClinical data columns:\")\n",
" print(clinical_df.columns.tolist())\n",
" \n",
" # Check if we have both gene data and potential trait data\n",
" has_gene_data = not genetic_df.empty\n",
" has_potential_trait_data = not clinical_df.empty\n",
" \n",
" # Record our initial assessment\n",
" validate_and_save_cohort_info(\n",
" is_final=False, \n",
" cohort=\"TCGA\", \n",
" info_path=json_path, \n",
" is_gene_available=has_gene_data, \n",
" is_trait_available=has_potential_trait_data\n",
" )\n",
"else:\n",
" print(f\"No TCGA subdirectory contains terms directly related to {trait}.\")\n",
" print(\"TCGA is primarily a cancer genomics database and may not have specific data for this inflammatory condition.\")\n",
" \n",
" # Marking the trait as unavailable in the cohort_info.json\n",
" validate_and_save_cohort_info(\n",
" is_final=False, \n",
" cohort=\"TCGA\", \n",
" info_path=json_path, \n",
" is_gene_available=False, \n",
" is_trait_available=False\n",
" )\n",
" \n",
" print(f\"Task completed: {trait} data not available in TCGA dataset.\")"
]
}
],
"metadata": {
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.16"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|