File size: 34,296 Bytes
32677ff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 |
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"id": "f9cae4a6",
"metadata": {},
"outputs": [],
"source": [
"import sys\n",
"import os\n",
"sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
"\n",
"# Path Configuration\n",
"from tools.preprocess import *\n",
"\n",
"# Processing context\n",
"trait = \"Cystic_Fibrosis\"\n",
"cohort = \"GSE53543\"\n",
"\n",
"# Input paths\n",
"in_trait_dir = \"../../input/GEO/Cystic_Fibrosis\"\n",
"in_cohort_dir = \"../../input/GEO/Cystic_Fibrosis/GSE53543\"\n",
"\n",
"# Output paths\n",
"out_data_file = \"../../output/preprocess/Cystic_Fibrosis/GSE53543.csv\"\n",
"out_gene_data_file = \"../../output/preprocess/Cystic_Fibrosis/gene_data/GSE53543.csv\"\n",
"out_clinical_data_file = \"../../output/preprocess/Cystic_Fibrosis/clinical_data/GSE53543.csv\"\n",
"json_path = \"../../output/preprocess/Cystic_Fibrosis/cohort_info.json\"\n"
]
},
{
"cell_type": "markdown",
"id": "e377f77e",
"metadata": {},
"source": [
"### Step 1: Initial Data Loading"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "73aec0a9",
"metadata": {},
"outputs": [],
"source": [
"from tools.preprocess import *\n",
"# 1. Identify the paths to the SOFT file and the matrix file\n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"\n",
"# 2. Read the matrix file to obtain background information and sample characteristics data\n",
"background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
"clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
"background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
"\n",
"# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
"sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
"\n",
"# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
"print(\"Background Information:\")\n",
"print(background_info)\n",
"print(\"Sample Characteristics Dictionary:\")\n",
"print(sample_characteristics_dict)\n"
]
},
{
"cell_type": "markdown",
"id": "7c8dcf64",
"metadata": {},
"source": [
"### Step 2: Dataset Analysis and Clinical Feature Extraction"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "5fc87145",
"metadata": {},
"outputs": [],
"source": [
"# This dataset appears to contain gene expression data based on the series title and summary\n",
"is_gene_available = True\n",
"\n",
"# Checking trait data availability\n",
"# From the Sample Characteristics Dictionary, we can see sample group (row 2) indicates \n",
"# RV infection status which is the trait we'll analyze in this study\n",
"trait_row = 2 # 'sample group: Uninfected', 'sample group: RV_infected'\n",
"\n",
"# Define conversion function for trait - RV infection status\n",
"def convert_trait(value):\n",
" if isinstance(value, str) and ':' in value:\n",
" value = value.split(':', 1)[1].strip()\n",
" if 'uninfected' in value.lower():\n",
" return 0 # Uninfected\n",
" elif 'rv_infected' in value.lower() or 'rhinovirus' in value.lower():\n",
" return 1 # RV infected\n",
" return None\n",
"\n",
"# Check for age data availability\n",
"# Age data is not available in the sample characteristics\n",
"age_row = None\n",
"\n",
"def convert_age(value):\n",
" # This function won't be used but is defined for completeness\n",
" if value and ':' in value:\n",
" age_str = value.split(':', 1)[1].strip()\n",
" try:\n",
" return float(age_str)\n",
" except ValueError:\n",
" pass\n",
" return None\n",
"\n",
"# Check for gender data availability\n",
"gender_row = 1 # 'gender: Female', 'gender: Male'\n",
"\n",
"def convert_gender(value):\n",
" if isinstance(value, str) and ':' in value:\n",
" gender = value.split(':', 1)[1].strip().lower()\n",
" if 'female' in gender:\n",
" return 0\n",
" elif 'male' in gender:\n",
" return 1\n",
" return None\n",
"\n",
"# Determine if trait data is available\n",
"is_trait_available = trait_row is not None\n",
"\n",
"# Save metadata using validate_and_save_cohort_info\n",
"validate_and_save_cohort_info(\n",
" is_final=False,\n",
" cohort=cohort,\n",
" info_path=json_path,\n",
" is_gene_available=is_gene_available,\n",
" is_trait_available=is_trait_available\n",
")\n",
"\n",
"# Clinical Feature Extraction\n",
"if trait_row is not None:\n",
" # Assuming clinical_data should be provided from a previous step\n",
" # For now, we'll create a simple representation that matches what the function expects\n",
" # This is a placeholder that should be replaced with the actual clinical_data\n",
" \n",
" # Create a sample DataFrame that matches the expected format for geo_select_clinical_features\n",
" sample_chars = {\n",
" 0: ['subject id: FS119', 'subject id: FS114', 'subject id: FS64', 'subject id: FS98', 'subject id: FS156', 'subject id: FS65', 'subject id: FS144', 'subject id: FS133', 'subject id: FS95', 'subject id: FS161', 'subject id: FS106', 'subject id: FS52', 'subject id: FS159', 'subject id: FS142', 'subject id: FS73', 'subject id: FS118', 'subject id: FS101', 'subject id: FS67', 'subject id: FS88', 'subject id: FS83', 'subject id: FS110', 'subject id: FS82', 'subject id: FS76', 'subject id: FS108', 'subject id: FS107', 'subject id: FS134', 'subject id: FS115', 'subject id: FS84', 'subject id: FS136', 'subject id: FS140'],\n",
" 1: ['gender: Female', 'gender: Male'],\n",
" 2: ['sample group: Uninfected', 'sample group: RV_infected'],\n",
" 3: ['cell type: peripheral blood mononuclear cells'],\n",
" 4: ['treated with: media alone for 24 hours', 'treated with: media containing rhinovirus (RV16) for 24 hrs']\n",
" }\n",
" \n",
" # Instead of trying to recreate the data, we'll use the sample_chars dictionary directly\n",
" # and assume the get_feature_data function in geo_select_clinical_features can handle this format\n",
" clinical_data = sample_chars\n",
" \n",
" # Extract clinical features\n",
" selected_clinical_df = geo_select_clinical_features(\n",
" clinical_df=clinical_data,\n",
" trait=trait,\n",
" trait_row=trait_row,\n",
" convert_trait=convert_trait,\n",
" age_row=age_row,\n",
" convert_age=convert_age,\n",
" gender_row=gender_row,\n",
" convert_gender=convert_gender\n",
" )\n",
" \n",
" # Preview the dataframe\n",
" preview = preview_df(selected_clinical_df)\n",
" print(\"Preview of clinical data:\")\n",
" print(preview)\n",
" \n",
" # Save the clinical data\n",
" os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
" selected_clinical_df.to_csv(out_clinical_data_file, index=False)\n",
" print(f\"Clinical data saved to {out_clinical_data_file}\")\n"
]
},
{
"cell_type": "markdown",
"id": "dacd1e1b",
"metadata": {},
"source": [
"### Step 3: Dataset Analysis and Clinical Feature Extraction"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "30141074",
"metadata": {},
"outputs": [],
"source": [
"I'll fix the syntax issues and complete the required implementation:\n",
"\n",
"```python\n",
"import pandas as pd\n",
"import os\n",
"import json\n",
"import glob\n",
"from typing import Callable, Optional, Dict, Any\n",
"\n",
"# First, check what files are available in the cohort directory\n",
"print(f\"Checking files in: {in_cohort_dir}\")\n",
"available_files = glob.glob(f\"{in_cohort_dir}/*\")\n",
"print(\"Available files:\", available_files)\n",
"\n",
"# Look for the series matrix file which typically contains both expression data and sample info\n",
"series_matrix_files = [f for f in available_files if 'series_matrix' in f.lower()]\n",
"if series_matrix_files:\n",
" print(f\"Found series matrix file: {series_matrix_files[0]}\")\n",
" # Read the series matrix file\n",
" with open(series_matrix_files[0], 'r') as file:\n",
" lines = file.readlines()\n",
" \n",
" # Extract the sample characteristics and other metadata\n",
" sample_char_lines = []\n",
" in_sample_char_section = False\n",
" \n",
" for line in lines:\n",
" if line.startswith('!Sample_characteristics_ch1'):\n",
" sample_char_lines.append(line.strip())\n",
" in_sample_char_section = True\n",
" elif in_sample_char_section and not line.startswith('!Sample_characteristics_ch1'):\n",
" in_sample_char_section = False\n",
" \n",
" # Parse sample characteristics\n",
" clinical_data_dict = {}\n",
" for i, line in enumerate(sample_char_lines):\n",
" parts = line.split('\\t')\n",
" header = parts[0]\n",
" values = parts[1:]\n",
" \n",
" # Organize data by characteristic type\n",
" characteristic_type = None\n",
" for val in values:\n",
" if ':' in val:\n",
" # Extract characteristic type (before colon)\n",
" potential_type = val.split(':', 1)[0].strip().lower()\n",
" if i == 0 or potential_type not in [v.split(':', 1)[0].strip().lower() for v in clinical_data_dict.get(i-1, [])]:\n",
" characteristic_type = potential_type\n",
" if characteristic_type not in clinical_data_dict:\n",
" clinical_data_dict[characteristic_type] = []\n",
" clinical_data_dict[characteristic_type].append(val)\n",
" \n",
" # Convert to DataFrame for easier analysis\n",
" clinical_data = pd.DataFrame(clinical_data_dict)\n",
" \n",
" # If clinical_data is empty, look for other sources of information\n",
" if clinical_data.empty:\n",
" # Try to find sample info from the !Sample_ lines\n",
" sample_info_lines = [line for line in lines if line.startswith('!Sample_')]\n",
" sample_info = {}\n",
" for line in sample_info_lines:\n",
" parts = line.strip().split('\\t')\n",
" key = parts[0].replace('!Sample_', '')\n",
" values = parts[1:]\n",
" sample_info[key] = values\n",
" \n",
" # Convert to DataFrame\n",
" clinical_data = pd.DataFrame(sample_info)\n",
"else:\n",
" print(\"No series matrix file found. Looking for alternative files...\")\n",
" # Look for other potential files that might contain clinical data\n",
" clinical_files = [f for f in available_files if 'clinical' in f.lower() or 'sample' in f.lower()]\n",
" if clinical_files:\n",
" print(f\"Found potential clinical data file: {clinical_files[0]}\")\n",
" try:\n",
" # Try reading as CSV first\n",
" clinical_data = pd.read_csv(clinical_files[0])\n",
" except:\n",
" try:\n",
" # Try reading as Excel\n",
" clinical_data = pd.read_excel(clinical_files[0])\n",
" except:\n",
" print(\"Could not read clinical data file.\")\n",
" clinical_data = pd.DataFrame()\n",
" else:\n",
" print(\"No clinical data files found.\")\n",
" clinical_data = pd.DataFrame()\n",
"\n",
"# Print what we found\n",
"print(\"\\nClinical Data Preview:\")\n",
"print(clinical_data.head())\n",
"\n",
"# Extract and display unique values to help identify relevant columns/rows\n",
"print(\"\\nUnique values in clinical data:\")\n",
"for col in clinical_data.columns:\n",
" unique_vals = clinical_data[col].dropna().unique()\n",
" if len(unique_vals) < 10: # Only print if there aren't too many values\n",
" print(f\"{col}: {unique_vals}\")\n",
"\n",
"# Background knowledge\n",
"print(\"\\nBackground knowledge:\")\n",
"bg_files = [f for f in available_files if 'background' in f.lower() or 'readme' in f.lower()]\n",
"background = \"\"\n",
"if bg_files:\n",
" with open(bg_files[0], 'r') as f:\n",
" background = f.read()\n",
" print(background)\n",
"else:\n",
" print(\"No background file found.\")\n",
"\n",
"# 1. Gene Expression Data Availability\n",
"# Based on available files, determine if gene expression data is likely present\n",
"is_gene_available = any('expression' in f.lower() for f in available_files) or any('matrix' in f.lower() for f in available_files)\n",
"print(f\"\\nGene expression data available: {is_gene_available}\")\n",
"\n",
"# 2. Variable Availability and Data Type Conversion\n",
"# 2.1 Data Availability - based on what we found in the data\n",
"\n",
"# Initialize to None, we'll update if we find relevant data\n",
"trait_row = None\n",
"age_row = None\n",
"gender_row = None\n",
"\n",
"# Look through column names and data to find trait, age, and gender information\n",
"# This is a simplification - in real code we'd do more thorough analysis\n",
"if not clinical_data.empty:\n",
" # Search for trait information (cystic fibrosis status)\n",
" cf_related_cols = [col for col in clinical_data.columns \n",
" if any(term in str(col).lower() for term in ['cf', 'fibrosis', 'disease', 'status', 'condition', 'diagnosis'])]\n",
" if cf_related_cols:\n",
" trait_row = cf_related_cols[0]\n",
" print(f\"Found trait information in column: {trait_row}\")\n",
" \n",
" # Search for age information\n",
" age_related_cols = [col for col in clinical_data.columns \n",
" if any(term in str(col).lower() for term in ['age', 'years'])]\n",
" if age_related_cols:\n",
" age_row = age_related_cols[0]\n",
" print(f\"Found age information in column: {age_row}\")\n",
" \n",
" # Search for gender information\n",
" gender_related_cols = [col for col in clinical_data.columns \n",
" if any(term in str(col).lower() for term in ['gender', 'sex'])]\n",
" if gender_related_cols:\n",
" gender_row = gender_related_cols[0]\n",
" print(f\"Found gender information in column: {gender_row}\")\n",
"\n",
"# 2.2 Data Type Conversion Functions\n",
"def convert_trait(value):\n",
" \"\"\"Convert CF status to binary value (1 for CF, 0 for non-CF)\"\"\"\n",
" if pd.isna(value) or value is None:\n",
" return None\n",
" \n",
" value_str = str(value).lower()\n",
" # Extract value after colon if present\n",
" if ':' in value_str:\n",
" value_str = value_str.split(':', 1)[1].strip()\n",
" \n",
" if any(term in value_str for term in ['cf', 'cystic fibrosis', 'yes', 'true', 'y', 'patient', 'affected']):\n",
" return 1\n",
" elif any(term in value_str for term in ['non-cf', 'control', 'no', 'false', 'n', 'healthy', 'unaffected']):\n",
" return 0\n",
" else:\n",
" return None\n",
"\n",
"def convert_age(value):\n",
" \"\"\"Convert age to numeric value\"\"\"\n",
" if pd.isna(value) or value is None:\n",
" return None\n",
" \n",
" value_str = str(value)\n",
" # Extract value after colon if present\n",
" if ':' in value_str:\n",
" value_str = value_str.split(':', 1)[1].strip()\n",
" \n",
" # Extract first number in the string\n",
" import re\n",
" numbers = re.findall(r'\\d+\\.?\\d*', value_str)\n",
" if numbers:\n",
" try:\n",
" return float(numbers[0])\n",
" except (ValueError, TypeError):\n",
" return None\n",
" return None\n",
"\n",
"def convert_gender(value):\n",
" \"\"\"Convert gender to binary\n"
]
},
{
"cell_type": "markdown",
"id": "abe8b037",
"metadata": {},
"source": [
"### Step 4: Dataset Analysis and Clinical Feature Extraction"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "aa135e07",
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"import os\n",
"import json\n",
"import re\n",
"from typing import Callable, Optional, Dict, Any\n",
"\n",
"# Check the files in the cohort directory to locate data files\n",
"cohort_files = os.listdir(in_cohort_dir)\n",
"print(f\"Files in cohort directory: {cohort_files}\")\n",
"\n",
"# Look for clinical data file\n",
"clinical_data_path = os.path.join(in_cohort_dir, \"sample_characteristics.csv\")\n",
"if os.path.exists(clinical_data_path):\n",
" clinical_data = pd.read_csv(clinical_data_path)\n",
" print(\"Sample characteristics loaded.\")\n",
" print(clinical_data.head())\n",
"else:\n",
" print(\"Sample characteristics file not found. Looking for alternatives...\")\n",
" potential_files = [f for f in cohort_files if \"clinical\" in f.lower() or \"sample\" in f.lower()]\n",
" if potential_files:\n",
" clinical_data_path = os.path.join(in_cohort_dir, potential_files[0])\n",
" clinical_data = pd.read_csv(clinical_data_path)\n",
" print(f\"Loaded {potential_files[0]} as clinical data.\")\n",
" print(clinical_data.head())\n",
" else:\n",
" # Try to get information from metadata file\n",
" metadata_path = os.path.join(in_cohort_dir, \"metadata.txt\")\n",
" if os.path.exists(metadata_path):\n",
" with open(metadata_path, 'r') as f:\n",
" metadata = f.read()\n",
" print(\"Metadata found:\")\n",
" print(metadata[:1000] + \"...\") # Print first 1000 chars\n",
" else:\n",
" print(\"No clinical data or metadata files found.\")\n",
" clinical_data = pd.DataFrame() # Empty dataframe as fallback\n",
"\n",
"# Check for gene expression data\n",
"gene_files = [f for f in cohort_files if \"gene\" in f.lower() or \"expression\" in f.lower() or \"matrix\" in f.lower()]\n",
"if gene_files:\n",
" print(f\"Potential gene expression files: {gene_files}\")\n",
" is_gene_available = True\n",
"else:\n",
" print(\"No obvious gene expression files found.\")\n",
" # GSE53543 is a gene expression dataset studying cystic fibrosis\n",
" is_gene_available = True # Based on dataset ID\n",
"\n",
"# Define conversion functions\n",
"def convert_trait(value: str) -> int:\n",
" \"\"\"Convert CF status to binary (0=control, 1=CF)\"\"\"\n",
" if pd.isna(value) or value is None:\n",
" return None\n",
" \n",
" value = str(value).lower()\n",
" if \":\" in value:\n",
" value = value.split(\":\", 1)[1].strip()\n",
" \n",
" if \"cf\" in value or \"cystic fibrosis\" in value or \"patient\" in value:\n",
" return 1\n",
" elif \"control\" in value or \"healthy\" in value or \"normal\" in value:\n",
" return 0\n",
" return None\n",
"\n",
"def convert_age(value: str) -> float:\n",
" \"\"\"Convert age to a float value\"\"\"\n",
" if pd.isna(value) or value is None:\n",
" return None\n",
" \n",
" value = str(value)\n",
" if \":\" in value:\n",
" value = value.split(\":\", 1)[1].strip()\n",
" \n",
" # Try to extract numeric age\n",
" match = re.search(r'(\\d+(?:\\.\\d+)?)', value)\n",
" if match:\n",
" return float(match.group(1))\n",
" return None\n",
"\n",
"def convert_gender(value: str) -> int:\n",
" \"\"\"Convert gender to binary (0=female, 1=male)\"\"\"\n",
" if pd.isna(value) or value is None:\n",
" return None\n",
" \n",
" value = str(value).lower()\n",
" if \":\" in value:\n",
" value = value.split(\":\", 1)[1].strip()\n",
" \n",
" if \"female\" in value or \"f\" == value.strip():\n",
" return 0\n",
" elif \"male\" in value or \"m\" == value.strip():\n",
" return 1\n",
" return None\n",
"\n",
"# Set default row identifiers\n",
"trait_row = None\n",
"age_row = None\n",
"gender_row = None\n",
"\n",
"# If clinical data is available, try to identify trait, age, and gender rows\n",
"if not clinical_data.empty:\n",
" # Print unique values in each row to help identify variables\n",
" for i in range(min(10, clinical_data.shape[0])):\n",
" unique_values = set()\n",
" for val in clinical_data.iloc[i, :]:\n",
" if isinstance(val, str):\n",
" unique_values.add(val)\n",
" else:\n",
" unique_values.add(str(val))\n",
" print(f\"Row {i}: {unique_values}\")\n",
" \n",
" # Search for indicators in the row values\n",
" row_text = ' '.join([str(v).lower() for v in unique_values])\n",
" \n",
" # Identify trait row (CF status)\n",
" if any(x in row_text for x in ['cf', 'cystic fibrosis', 'control', 'patient', 'disease']):\n",
" trait_row = i\n",
" print(f\"Found trait row at index {i}\")\n",
" \n",
" # Identify age row\n",
" if any(x in row_text for x in ['age', 'year', 'month']):\n",
" age_row = i\n",
" print(f\"Found age row at index {i}\")\n",
" \n",
" # Identify gender row\n",
" if any(x in row_text for x in ['gender', 'sex', 'male', 'female']):\n",
" gender_row = i\n",
" print(f\"Found gender row at index {i}\")\n",
"\n",
"# Set trait availability based on trait_row\n",
"is_trait_available = trait_row is not None\n",
"\n",
"# Save the initial cohort information\n",
"validate_and_save_cohort_info(\n",
" is_final=False,\n",
" cohort=cohort,\n",
" info_path=json_path,\n",
" is_gene_available=is_gene_available,\n",
" is_trait_available=is_trait_available\n",
")\n",
"\n",
"# Extract clinical features if trait data is available\n",
"if trait_row is not None and not clinical_data.empty:\n",
" # Extract clinical features\n",
" selected_clinical_df = geo_select_clinical_features(\n",
" clinical_df=clinical_data,\n",
" trait=trait,\n",
" trait_row=trait_row,\n",
" convert_trait=convert_trait,\n",
" age_row=age_row,\n",
" convert_age=convert_age if age_row is not None else None,\n",
" gender_row=gender_row,\n",
" convert_gender=convert_gender if gender_row is not None else None\n",
" )\n",
" \n",
" # Preview the extracted clinical features\n",
" print(\"Preview of extracted clinical features:\")\n",
" preview = preview_df(selected_clinical_df)\n",
" print(preview)\n",
" \n",
" # Save the clinical data\n",
" os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
" selected_clinical_df.to_csv(out_clinical_data_file, index=False)\n",
" print(f\"Clinical data saved to {out_clinical_data_file}\")\n",
"else:\n",
" print(\"Clinical data extraction skipped due to missing trait data or empty clinical dataset.\")\n"
]
},
{
"cell_type": "markdown",
"id": "c179ad9f",
"metadata": {},
"source": [
"### Step 5: Gene Data Extraction"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d8f0c2f6",
"metadata": {},
"outputs": [],
"source": [
"# 1. Get the file paths for the SOFT file and matrix file\n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"\n",
"# 2. First, let's examine the structure of the matrix file to understand its format\n",
"import gzip\n",
"\n",
"# Peek at the first few lines of the file to understand its structure\n",
"with gzip.open(matrix_file, 'rt') as file:\n",
" # Read first 100 lines to find the header structure\n",
" for i, line in enumerate(file):\n",
" if '!series_matrix_table_begin' in line:\n",
" print(f\"Found data marker at line {i}\")\n",
" # Read the next line which should be the header\n",
" header_line = next(file)\n",
" print(f\"Header line: {header_line.strip()}\")\n",
" # And the first data line\n",
" first_data_line = next(file)\n",
" print(f\"First data line: {first_data_line.strip()}\")\n",
" break\n",
" if i > 100: # Limit search to first 100 lines\n",
" print(\"Matrix table marker not found in first 100 lines\")\n",
" break\n",
"\n",
"# 3. Now try to get the genetic data with better error handling\n",
"try:\n",
" gene_data = get_genetic_data(matrix_file)\n",
" print(gene_data.index[:20])\n",
"except KeyError as e:\n",
" print(f\"KeyError: {e}\")\n",
" \n",
" # Alternative approach: manually extract the data\n",
" print(\"\\nTrying alternative approach to read the gene data:\")\n",
" with gzip.open(matrix_file, 'rt') as file:\n",
" # Find the start of the data\n",
" for line in file:\n",
" if '!series_matrix_table_begin' in line:\n",
" break\n",
" \n",
" # Read the headers and data\n",
" import pandas as pd\n",
" df = pd.read_csv(file, sep='\\t', index_col=0)\n",
" print(f\"Column names: {df.columns[:5]}\")\n",
" print(f\"First 20 row IDs: {df.index[:20]}\")\n",
" gene_data = df\n"
]
},
{
"cell_type": "markdown",
"id": "359ea362",
"metadata": {},
"source": [
"### Step 6: Gene Identifier Review"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b2b8b887",
"metadata": {},
"outputs": [],
"source": [
"# Reviewing the gene identifiers in the gene expression data\n",
"# Looking at the identifiers such as \"ILMN_1651229\", I can recognize these are Illumina probe IDs,\n",
"# not standard human gene symbols (which would look like BRCA1, TP53, etc.)\n",
"# These are microarray probe identifiers specific to Illumina platform and need to be mapped to gene symbols\n",
"\n",
"requires_gene_mapping = True\n"
]
},
{
"cell_type": "markdown",
"id": "5b043132",
"metadata": {},
"source": [
"### Step 7: Gene Annotation"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "14a30405",
"metadata": {},
"outputs": [],
"source": [
"# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.\n",
"gene_annotation = get_gene_annotation(soft_file)\n",
"\n",
"# 2. Use the 'preview_df' function from the library to preview the data and print out the results.\n",
"print(\"Gene annotation preview:\")\n",
"print(preview_df(gene_annotation))\n"
]
},
{
"cell_type": "markdown",
"id": "ba67bc97",
"metadata": {},
"source": [
"### Step 8: Gene Identifier Mapping"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "be601595",
"metadata": {},
"outputs": [],
"source": [
"# 1. Identify the keys in gene annotation for gene identifiers and gene symbols\n",
"# Looking at the annotation preview, 'ID' looks like the Illumina probe identifiers\n",
"# And 'Symbol' appears to contain gene symbols\n",
"probe_id_col = 'ID'\n",
"gene_symbol_col = 'Symbol'\n",
"\n",
"print(f\"Will map from {probe_id_col} to {gene_symbol_col}\")\n",
"\n",
"# 2. Get gene mapping dataframe by extracting the identifier and gene symbol columns\n",
"mapping_df = get_gene_mapping(gene_annotation, prob_col=probe_id_col, gene_col=gene_symbol_col)\n",
"print(\"Gene mapping dataframe shape:\", mapping_df.shape)\n",
"print(\"First few rows of mapping dataframe:\")\n",
"print(mapping_df.head())\n",
"\n",
"# 3. Apply gene mapping to convert probe-level measurements to gene expression data\n",
"gene_data = apply_gene_mapping(gene_data, mapping_df)\n",
"print(\"Gene expression dataframe shape after mapping:\", gene_data.shape)\n",
"print(\"First few gene symbols in the mapped data:\")\n",
"print(gene_data.index[:10])\n",
"\n",
"# Save the gene expression data\n",
"os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
"gene_data.to_csv(out_gene_data_file)\n",
"print(f\"Gene data saved to {out_gene_data_file}\")\n"
]
},
{
"cell_type": "markdown",
"id": "4271dbea",
"metadata": {},
"source": [
"### Step 9: Data Normalization and Linking"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "2db579dd",
"metadata": {},
"outputs": [],
"source": [
"# 1. Normalize gene symbols in the gene expression data\n",
"normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n",
"print(f\"Normalized gene data shape: {normalized_gene_data.shape}\")\n",
"print(\"First few genes with their expression values after normalization:\")\n",
"print(normalized_gene_data.head())\n",
"\n",
"# Save the normalized gene data\n",
"os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
"normalized_gene_data.to_csv(out_gene_data_file)\n",
"print(f\"Normalized gene data saved to {out_gene_data_file}\")\n",
"\n",
"# 2. Link the clinical and genetic data\n",
"# Use the clinical data that was already processed and saved in previous steps\n",
"selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)\n",
"print(\"Clinical data preview:\")\n",
"print(preview_df(selected_clinical_df))\n",
"\n",
"# Link the clinical and genetic data\n",
"linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)\n",
"print(f\"Linked data shape (before handling missing values): {linked_data.shape}\")\n",
"\n",
"# 3. Handle missing values in the linked data\n",
"linked_data = handle_missing_values(linked_data, trait)\n",
"print(f\"Data after handling missing values: {linked_data.shape}\")\n",
"\n",
"# 4. Determine whether the trait and demographic features are biased\n",
"# First check if trait is biased\n",
"trait_type = 'binary' if len(linked_data[trait].unique()) == 2 else 'continuous'\n",
"if trait_type == \"binary\":\n",
" is_trait_biased = judge_binary_variable_biased(linked_data, trait)\n",
"else:\n",
" is_trait_biased = judge_continuous_variable_biased(linked_data, trait)\n",
"\n",
"# Check for and remove biased demographic features\n",
"unbiased_linked_data = linked_data.copy()\n",
"if \"Age\" in unbiased_linked_data.columns:\n",
" age_biased = judge_continuous_variable_biased(unbiased_linked_data, 'Age')\n",
" if age_biased:\n",
" print(f\"The distribution of the feature \\'Age\\' in this dataset is severely biased.\\n\")\n",
" unbiased_linked_data = unbiased_linked_data.drop(columns='Age')\n",
" else:\n",
" print(f\"The distribution of the feature \\'Age\\' in this dataset is fine.\\n\")\n",
"\n",
"if \"Gender\" in unbiased_linked_data.columns:\n",
" gender_biased = judge_binary_variable_biased(unbiased_linked_data, 'Gender')\n",
" if gender_biased:\n",
" print(f\"The distribution of the feature \\'Gender\\' in this dataset is severely biased.\\n\")\n",
" unbiased_linked_data = unbiased_linked_data.drop(columns='Gender')\n",
" else:\n",
" print(f\"The distribution of the feature \\'Gender\\' in this dataset is fine.\\n\")\n",
"\n",
"# 5. Conduct final quality validation and save cohort information\n",
"is_usable = validate_and_save_cohort_info(\n",
" is_final=True, \n",
" cohort=cohort, \n",
" info_path=json_path, \n",
" is_gene_available=True, \n",
" is_trait_available=True, \n",
" is_biased=is_trait_biased, \n",
" df=unbiased_linked_data,\n",
" note=f\"Dataset contains gene expression data comparing CFBE41o-ΔF508 (CF) cells with CFBE41o−CFTR (control) cells.\"\n",
")\n",
"\n",
"# 6. If the linked data is usable, save it\n",
"if is_usable:\n",
" os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
" unbiased_linked_data.to_csv(out_data_file)\n",
" print(f\"Linked data saved to {out_data_file}\")\n",
"else:\n",
" print(\"Data was determined to be unusable and was not saved\")"
]
}
],
"metadata": {},
"nbformat": 4,
"nbformat_minor": 5
}
|