File size: 22,093 Bytes
f88156f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "0ae586c0",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T08:02:14.650022Z",
     "iopub.status.busy": "2025-03-25T08:02:14.649795Z",
     "iopub.status.idle": "2025-03-25T08:02:14.816121Z",
     "shell.execute_reply": "2025-03-25T08:02:14.815744Z"
    }
   },
   "outputs": [],
   "source": [
    "import sys\n",
    "import os\n",
    "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
    "\n",
    "# Path Configuration\n",
    "from tools.preprocess import *\n",
    "\n",
    "# Processing context\n",
    "trait = \"Endometriosis\"\n",
    "cohort = \"GSE111974\"\n",
    "\n",
    "# Input paths\n",
    "in_trait_dir = \"../../input/GEO/Endometriosis\"\n",
    "in_cohort_dir = \"../../input/GEO/Endometriosis/GSE111974\"\n",
    "\n",
    "# Output paths\n",
    "out_data_file = \"../../output/preprocess/Endometriosis/GSE111974.csv\"\n",
    "out_gene_data_file = \"../../output/preprocess/Endometriosis/gene_data/GSE111974.csv\"\n",
    "out_clinical_data_file = \"../../output/preprocess/Endometriosis/clinical_data/GSE111974.csv\"\n",
    "json_path = \"../../output/preprocess/Endometriosis/cohort_info.json\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "ef96dfa9",
   "metadata": {},
   "source": [
    "### Step 1: Initial Data Loading"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "ea530a2f",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T08:02:14.817582Z",
     "iopub.status.busy": "2025-03-25T08:02:14.817439Z",
     "iopub.status.idle": "2025-03-25T08:02:14.978118Z",
     "shell.execute_reply": "2025-03-25T08:02:14.977716Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Background Information:\n",
      "!Series_title\t\"Endometrial Tissue RNA expression in Recurrent Implantation Failure vs. Conrol\"\n",
      "!Series_summary\t\"We aimed to identify altered biological processes in the endometrium that may be potential markers of receptive endometrium. RNA expression profiling of the endometrium during the window of implantation was performed in patients with Recurrent Implantation Failure (RIF) versus fertile controls.\"\n",
      "!Series_overall_design\t\"24 patients with RIF treated at the IVF clinic and 24 fertile control patients recruited from the gynecology clinic of Istanbul University School of Medicine during 2014-2015 were involved in this prospective cohort study. RIF was determined as failure of pregnancy in ≥ 3 consecutive IVF cycles with ≥1 transfer(s) of good quality embryo in each cycle. Exclusion criteria for this group were active pelvic infections, undiagnosed vaginal bleeding, uterine anomalies, endometriosis, karyotype anomalies in one or both partners. Fertile control patients had a history of at least one live birth with no associated comorbidities.\"\n",
      "Sample Characteristics Dictionary:\n",
      "{0: ['tissue: Endometrial tissue']}\n"
     ]
    }
   ],
   "source": [
    "from tools.preprocess import *\n",
    "# 1. Identify the paths to the SOFT file and the matrix file\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. Read the matrix file to obtain background information and sample characteristics data\n",
    "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
    "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
    "background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
    "\n",
    "# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
    "sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
    "\n",
    "# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
    "print(\"Background Information:\")\n",
    "print(background_info)\n",
    "print(\"Sample Characteristics Dictionary:\")\n",
    "print(sample_characteristics_dict)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "9b68464c",
   "metadata": {},
   "source": [
    "### Step 2: Dataset Analysis and Clinical Feature Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "97ffc7fd",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T08:02:14.979567Z",
     "iopub.status.busy": "2025-03-25T08:02:14.979457Z",
     "iopub.status.idle": "2025-03-25T08:02:14.986776Z",
     "shell.execute_reply": "2025-03-25T08:02:14.986482Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "A new JSON file was created at: ../../output/preprocess/Endometriosis/cohort_info.json\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "False"
      ]
     },
     "execution_count": 3,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# Set gene_expression availability based on data review\n",
    "# This dataset mentions RNA expression profiling, which indicates gene expression data is available\n",
    "is_gene_available = True\n",
    "\n",
    "# Check clinical data availability (trait, age, gender)\n",
    "# For trait: The sample characteristics don't show RIF vs Control information\n",
    "# And the extraction attempt resulted in all NaN values\n",
    "trait_row = None  # No explicit trait information available in the expected format\n",
    "\n",
    "# For age: Not mentioned in sample characteristics\n",
    "age_row = None\n",
    "\n",
    "# For gender: All subjects appear to be female by study design (IVF study)\n",
    "gender_row = None\n",
    "\n",
    "# Define conversion functions (needed for the interface but won't be used with None values)\n",
    "def convert_trait(trait_value):\n",
    "    \"\"\"\n",
    "    Convert trait values to binary (0 for control, 1 for RIF)\n",
    "    \"\"\"\n",
    "    if trait_value is None:\n",
    "        return None\n",
    "    \n",
    "    # Extract value after colon if present\n",
    "    if ':' in trait_value:\n",
    "        trait_value = trait_value.split(':', 1)[1].strip()\n",
    "    \n",
    "    trait_value = trait_value.lower()\n",
    "    if 'rif' in trait_value or 'recurrent implantation failure' in trait_value:\n",
    "        return 1\n",
    "    elif 'control' in trait_value or 'fertile' in trait_value:\n",
    "        return 0\n",
    "    else:\n",
    "        return None\n",
    "\n",
    "def convert_age(age_value):\n",
    "    \"\"\"\n",
    "    Convert age values to continuous\n",
    "    \"\"\"\n",
    "    if age_value is None:\n",
    "        return None\n",
    "    \n",
    "    # Extract value after colon if present\n",
    "    if ':' in age_value:\n",
    "        age_value = age_value.split(':', 1)[1].strip()\n",
    "    \n",
    "    try:\n",
    "        # Try to convert to float, handling various formats\n",
    "        age_value = age_value.replace('years', '').replace('year', '').strip()\n",
    "        return float(age_value)\n",
    "    except (ValueError, AttributeError):\n",
    "        return None\n",
    "\n",
    "def convert_gender(gender_value):\n",
    "    \"\"\"\n",
    "    Convert gender values to binary (0 for female, 1 for male)\n",
    "    \"\"\"\n",
    "    if gender_value is None:\n",
    "        return None\n",
    "    \n",
    "    # Extract value after colon if present\n",
    "    if ':' in gender_value:\n",
    "        gender_value = gender_value.split(':', 1)[1].strip().lower()\n",
    "    \n",
    "    if 'female' in gender_value or 'f' == gender_value:\n",
    "        return 0\n",
    "    elif 'male' in gender_value or 'm' == gender_value:\n",
    "        return 1\n",
    "    else:\n",
    "        return None\n",
    "\n",
    "# Check trait availability based on trait_row\n",
    "is_trait_available = trait_row is not None\n",
    "\n",
    "# Validate and save cohort information\n",
    "validate_and_save_cohort_info(\n",
    "    is_final=False,\n",
    "    cohort=cohort,\n",
    "    info_path=json_path,\n",
    "    is_gene_available=is_gene_available,\n",
    "    is_trait_available=is_trait_available\n",
    ")\n",
    "\n",
    "# Skip clinical feature extraction as trait_row is None\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "608e993e",
   "metadata": {},
   "source": [
    "### Step 3: Gene Data Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "b374655f",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T08:02:14.987951Z",
     "iopub.status.busy": "2025-03-25T08:02:14.987844Z",
     "iopub.status.idle": "2025-03-25T08:02:15.212290Z",
     "shell.execute_reply": "2025-03-25T08:02:15.211952Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Found data marker at line 56\n",
      "Header line: \"ID_REF\"\t\"GSM3045867\"\t\"GSM3045868\"\t\"GSM3045869\"\t\"GSM3045870\"\t\"GSM3045871\"\t\"GSM3045872\"\t\"GSM3045873\"\t\"GSM3045874\"\t\"GSM3045875\"\t\"GSM3045876\"\t\"GSM3045877\"\t\"GSM3045878\"\t\"GSM3045879\"\t\"GSM3045880\"\t\"GSM3045881\"\t\"GSM3045882\"\t\"GSM3045883\"\t\"GSM3045884\"\t\"GSM3045885\"\t\"GSM3045886\"\t\"GSM3045887\"\t\"GSM3045888\"\t\"GSM3045889\"\t\"GSM3045890\"\t\"GSM3045891\"\t\"GSM3045892\"\t\"GSM3045893\"\t\"GSM3045894\"\t\"GSM3045895\"\t\"GSM3045896\"\t\"GSM3045897\"\t\"GSM3045898\"\t\"GSM3045899\"\t\"GSM3045900\"\t\"GSM3045901\"\t\"GSM3045902\"\t\"GSM3045903\"\t\"GSM3045904\"\t\"GSM3045905\"\t\"GSM3045906\"\t\"GSM3045907\"\t\"GSM3045908\"\t\"GSM3045909\"\t\"GSM3045910\"\t\"GSM3045911\"\t\"GSM3045912\"\t\"GSM3045913\"\t\"GSM3045914\"\n",
      "First data line: \"A_19_P00315452\"\t8.2941\t9.4957\t9.13\t8.1259\t8.2462\t9.04\t7.7973\t8.5905\t9.2121\t9.0986\t9.6616\t8.5906\t8.1014\t9.2161\t9.364\t8.2461\t8.4084\t9.6027\t7.2648\t7.9788\t8.4856\t8.7482\t9.1229\t9.1373\t8.5388\t7.8161\t7.3634\t7.976\t8.1333\t7.6221\t6.5153\t9.2491\t7.7401\t7.9426\t8.2897\t8.1575\t7.8499\t7.3065\t7.7341\t8.6831\t8.2265\t8.6232\t5.5753\t8.1671\t8.1832\t8.358\t8.4928\t7.4193\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Index(['A_19_P00315452', 'A_19_P00315459', 'A_19_P00315482', 'A_19_P00315492',\n",
      "       'A_19_P00315493', 'A_19_P00315502', 'A_19_P00315506', 'A_19_P00315518',\n",
      "       'A_19_P00315519', 'A_19_P00315524', 'A_19_P00315528', 'A_19_P00315529',\n",
      "       'A_19_P00315538', 'A_19_P00315541', 'A_19_P00315543', 'A_19_P00315550',\n",
      "       'A_19_P00315551', 'A_19_P00315554', 'A_19_P00315581', 'A_19_P00315583'],\n",
      "      dtype='object', name='ID')\n"
     ]
    }
   ],
   "source": [
    "# 1. Get the file paths for the SOFT file and matrix file\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. First, let's examine the structure of the matrix file to understand its format\n",
    "import gzip\n",
    "\n",
    "# Peek at the first few lines of the file to understand its structure\n",
    "with gzip.open(matrix_file, 'rt') as file:\n",
    "    # Read first 100 lines to find the header structure\n",
    "    for i, line in enumerate(file):\n",
    "        if '!series_matrix_table_begin' in line:\n",
    "            print(f\"Found data marker at line {i}\")\n",
    "            # Read the next line which should be the header\n",
    "            header_line = next(file)\n",
    "            print(f\"Header line: {header_line.strip()}\")\n",
    "            # And the first data line\n",
    "            first_data_line = next(file)\n",
    "            print(f\"First data line: {first_data_line.strip()}\")\n",
    "            break\n",
    "        if i > 100:  # Limit search to first 100 lines\n",
    "            print(\"Matrix table marker not found in first 100 lines\")\n",
    "            break\n",
    "\n",
    "# 3. Now try to get the genetic data with better error handling\n",
    "try:\n",
    "    gene_data = get_genetic_data(matrix_file)\n",
    "    print(gene_data.index[:20])\n",
    "except KeyError as e:\n",
    "    print(f\"KeyError: {e}\")\n",
    "    \n",
    "    # Alternative approach: manually extract the data\n",
    "    print(\"\\nTrying alternative approach to read the gene data:\")\n",
    "    with gzip.open(matrix_file, 'rt') as file:\n",
    "        # Find the start of the data\n",
    "        for line in file:\n",
    "            if '!series_matrix_table_begin' in line:\n",
    "                break\n",
    "                \n",
    "        # Read the headers and data\n",
    "        import pandas as pd\n",
    "        df = pd.read_csv(file, sep='\\t', index_col=0)\n",
    "        print(f\"Column names: {df.columns[:5]}\")\n",
    "        print(f\"First 20 row IDs: {df.index[:20]}\")\n",
    "        gene_data = df\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "c1d1c44c",
   "metadata": {},
   "source": [
    "### Step 4: Gene Identifier Review"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "c68451f6",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T08:02:15.213681Z",
     "iopub.status.busy": "2025-03-25T08:02:15.213555Z",
     "iopub.status.idle": "2025-03-25T08:02:15.215519Z",
     "shell.execute_reply": "2025-03-25T08:02:15.215243Z"
    }
   },
   "outputs": [],
   "source": [
    "# Examining the gene identifiers from the previous step\n",
    "# The identifiers like \"A_19_P00315452\" appear to be probe IDs from a microarray platform\n",
    "# These are not standard human gene symbols and will need to be mapped to proper gene symbols\n",
    "\n",
    "# Based on my biomedical knowledge, these \"A_19_P\" identifiers are Agilent microarray probe IDs\n",
    "# They need to be mapped to standard gene symbols for proper interpretation and analysis\n",
    "\n",
    "requires_gene_mapping = True\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "27f595c5",
   "metadata": {},
   "source": [
    "### Step 5: Gene Annotation"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "826bed51",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T08:02:15.216721Z",
     "iopub.status.busy": "2025-03-25T08:02:15.216613Z",
     "iopub.status.idle": "2025-03-25T08:02:18.921856Z",
     "shell.execute_reply": "2025-03-25T08:02:18.921517Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Gene annotation preview:\n",
      "{'ID': ['GE_BrightCorner', 'DarkCorner', 'A_23_P117082', 'A_33_P3246448', 'A_33_P3318220'], 'SPOT_ID': ['CONTROL', 'CONTROL', 'A_23_P117082', 'A_33_P3246448', 'A_33_P3318220'], 'CONTROL_TYPE': ['pos', 'pos', 'FALSE', 'FALSE', 'FALSE'], 'REFSEQ': [nan, nan, 'NM_015987', 'NM_080671', 'NM_178466'], 'GB_ACC': [nan, nan, 'NM_015987', 'NM_080671', 'NM_178466'], 'LOCUSLINK_ID': [nan, nan, 50865.0, 23704.0, 128861.0], 'GENE_SYMBOL': [nan, nan, 'HEBP1', 'KCNE4', 'BPIFA3'], 'GENE_NAME': [nan, nan, 'heme binding protein 1', 'potassium voltage-gated channel, Isk-related family, member 4', 'BPI fold containing family A, member 3'], 'UNIGENE_ID': [nan, nan, 'Hs.642618', 'Hs.348522', 'Hs.360989'], 'ENSEMBL_ID': [nan, nan, 'ENST00000014930', 'ENST00000281830', 'ENST00000375454'], 'ACCESSION_STRING': [nan, nan, 'ref|NM_015987|ens|ENST00000014930|gb|AF117615|gb|BC016277', 'ref|NM_080671|ens|ENST00000281830|tc|THC2655788', 'ref|NM_178466|ens|ENST00000375454|ens|ENST00000471233|tc|THC2478474'], 'CHROMOSOMAL_LOCATION': [nan, nan, 'chr12:13127906-13127847', 'chr2:223920197-223920256', 'chr20:31812208-31812267'], 'CYTOBAND': [nan, nan, 'hs|12p13.1', 'hs|2q36.1', 'hs|20q11.21'], 'DESCRIPTION': [nan, nan, 'Homo sapiens heme binding protein 1 (HEBP1), mRNA [NM_015987]', 'Homo sapiens potassium voltage-gated channel, Isk-related family, member 4 (KCNE4), mRNA [NM_080671]', 'Homo sapiens BPI fold containing family A, member 3 (BPIFA3), transcript variant 1, mRNA [NM_178466]'], 'GO_ID': [nan, nan, 'GO:0005488(binding)|GO:0005576(extracellular region)|GO:0005737(cytoplasm)|GO:0005739(mitochondrion)|GO:0005829(cytosol)|GO:0007623(circadian rhythm)|GO:0020037(heme binding)', 'GO:0005244(voltage-gated ion channel activity)|GO:0005249(voltage-gated potassium channel activity)|GO:0006811(ion transport)|GO:0006813(potassium ion transport)|GO:0016020(membrane)|GO:0016021(integral to membrane)|GO:0016324(apical plasma membrane)', 'GO:0005576(extracellular region)|GO:0008289(lipid binding)'], 'SEQUENCE': [nan, nan, 'AAGGGGGAAAATGTGATTTGTGCCTGATCTTTCATCTGTGATTCTTATAAGAGCTTTGTC', 'GCAAGTCTCTCTGCACCTATTAAAAAGTGATGTATATACTTCCTTCTTATTCTGTTGAGT', 'CATTCCATAAGGAGTGGTTCTCGGCAAATATCTCACTTGAATTTGACCTTGAATTGAGAC']}\n"
     ]
    }
   ],
   "source": [
    "# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.\n",
    "gene_annotation = get_gene_annotation(soft_file)\n",
    "\n",
    "# 2. Use the 'preview_df' function from the library to preview the data and print out the results.\n",
    "print(\"Gene annotation preview:\")\n",
    "print(preview_df(gene_annotation))\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "1f87c184",
   "metadata": {},
   "source": [
    "### Step 6: Gene Identifier Mapping"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "c9b5bb66",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T08:02:18.923675Z",
     "iopub.status.busy": "2025-03-25T08:02:18.923553Z",
     "iopub.status.idle": "2025-03-25T08:02:19.163061Z",
     "shell.execute_reply": "2025-03-25T08:02:19.162654Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Gene expression data preview after mapping:\n",
      "Index(['A1BG', 'A1BG-AS1', 'A1CF', 'A2LD1', 'A2M', 'A2ML1', 'A2MP1', 'A4GALT',\n",
      "       'A4GNT', 'AA06', 'AAA1', 'AAAS', 'AACS', 'AACSP1', 'AADAC', 'AADACL2',\n",
      "       'AADACL3', 'AADACL4', 'AADAT', 'AAGAB'],\n",
      "      dtype='object', name='Gene')\n",
      "Shape of gene expression data: (20353, 48)\n"
     ]
    }
   ],
   "source": [
    "# 1. Identify columns for gene identifier mapping\n",
    "# From the gene annotation preview, we can see:\n",
    "# - 'ID' column contains identifiers like A_23_P117082, which matches the indices in gene_data\n",
    "# - 'GENE_SYMBOL' column contains gene symbols like HEBP1, which is what we need\n",
    "\n",
    "# 2. Extract the ID and GENE_SYMBOL columns to create mapping dataframe\n",
    "prob_col = 'ID'  # The column containing probe IDs\n",
    "gene_col = 'GENE_SYMBOL'  # The column containing gene symbols\n",
    "gene_mapping = get_gene_mapping(gene_annotation, prob_col, gene_col)\n",
    "\n",
    "# 3. Apply the gene mapping to convert probe-level measurements to gene expression data\n",
    "gene_data = apply_gene_mapping(gene_data, gene_mapping)\n",
    "\n",
    "# Preview the first few rows of the gene expression data after mapping\n",
    "print(\"Gene expression data preview after mapping:\")\n",
    "print(gene_data.index[:20])  # Show the first 20 gene symbols\n",
    "print(f\"Shape of gene expression data: {gene_data.shape}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "d7cbfc86",
   "metadata": {},
   "source": [
    "### Step 7: Data Normalization and Linking"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "1e6b0cd2",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T08:02:19.164273Z",
     "iopub.status.busy": "2025-03-25T08:02:19.164055Z",
     "iopub.status.idle": "2025-03-25T08:02:19.782697Z",
     "shell.execute_reply": "2025-03-25T08:02:19.782272Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Normalized gene data saved to ../../output/preprocess/Endometriosis/gene_data/GSE111974.csv\n",
      "Clinical data (empty) saved to ../../output/preprocess/Endometriosis/clinical_data/GSE111974.csv\n",
      "Data was determined to be unusable due to missing trait information\n"
     ]
    }
   ],
   "source": [
    "# 1. Normalize the obtained gene data with the 'normalize_gene_symbols_in_index' function from the library.\n",
    "normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n",
    "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
    "normalized_gene_data.to_csv(out_gene_data_file)\n",
    "print(f\"Normalized gene data saved to {out_gene_data_file}\")\n",
    "\n",
    "# Since trait_row is None (as determined in step 2), we use is_final=False for validation\n",
    "is_usable = validate_and_save_cohort_info(\n",
    "    is_final=False,\n",
    "    cohort=cohort, \n",
    "    info_path=json_path, \n",
    "    is_gene_available=True, \n",
    "    is_trait_available=False  # No trait data available\n",
    ")\n",
    "\n",
    "# Create empty clinical features dataframe since trait_row is None\n",
    "clinical_features_df = pd.DataFrame()\n",
    "os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "clinical_features_df.to_csv(out_clinical_data_file)\n",
    "print(f\"Clinical data (empty) saved to {out_clinical_data_file}\")\n",
    "\n",
    "# No further processing needed as the dataset is unusable due to lack of trait data\n",
    "print(\"Data was determined to be unusable due to missing trait information\")"
   ]
  }
 ],
 "metadata": {
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.16"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}