File size: 40,545 Bytes
82732bd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "fd56f70d",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T05:13:50.750133Z",
"iopub.status.busy": "2025-03-25T05:13:50.750032Z",
"iopub.status.idle": "2025-03-25T05:13:50.907429Z",
"shell.execute_reply": "2025-03-25T05:13:50.907082Z"
}
},
"outputs": [],
"source": [
"import sys\n",
"import os\n",
"sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
"\n",
"# Path Configuration\n",
"from tools.preprocess import *\n",
"\n",
"# Processing context\n",
"trait = \"Esophageal_Cancer\"\n",
"cohort = \"GSE75241\"\n",
"\n",
"# Input paths\n",
"in_trait_dir = \"../../input/GEO/Esophageal_Cancer\"\n",
"in_cohort_dir = \"../../input/GEO/Esophageal_Cancer/GSE75241\"\n",
"\n",
"# Output paths\n",
"out_data_file = \"../../output/preprocess/Esophageal_Cancer/GSE75241.csv\"\n",
"out_gene_data_file = \"../../output/preprocess/Esophageal_Cancer/gene_data/GSE75241.csv\"\n",
"out_clinical_data_file = \"../../output/preprocess/Esophageal_Cancer/clinical_data/GSE75241.csv\"\n",
"json_path = \"../../output/preprocess/Esophageal_Cancer/cohort_info.json\"\n"
]
},
{
"cell_type": "markdown",
"id": "031574a0",
"metadata": {},
"source": [
"### Step 1: Initial Data Loading"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "f636a22a",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T05:13:50.908821Z",
"iopub.status.busy": "2025-03-25T05:13:50.908684Z",
"iopub.status.idle": "2025-03-25T05:13:50.969210Z",
"shell.execute_reply": "2025-03-25T05:13:50.968902Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Background Information:\n",
"!Series_title\t\"Gene expression profile of esophageal squamous cell carcinoma\"\n",
"!Series_summary\t\"The goal was to identify the differently expressed genes between esophageal tumor and nonmalignant surrounding mucosa\"\n",
"!Series_overall_design\t\"15 paired ESCC samples and matched nonmalignant mucosa were analyzed\"\n",
"Sample Characteristics Dictionary:\n",
"{0: ['patient: 1', 'patient: 2', 'patient: 3', 'patient: 4', 'patient: 5', 'patient: 6', 'patient: 7', 'patient: 8', 'patient: 9', 'patient: 10', 'patient: 11', 'patient: 12', 'patient: 14', 'patient: 15', 'patient: 16'], 1: ['tissue: nonmalignant surrounding mucosa', 'tissue: esophageal tumor'], 2: [nan, 'tumor differentiation: poor', 'tumor differentiation: moderate', 'tumor differentiation: well']}\n"
]
}
],
"source": [
"from tools.preprocess import *\n",
"# 1. Identify the paths to the SOFT file and the matrix file\n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"\n",
"# 2. Read the matrix file to obtain background information and sample characteristics data\n",
"background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
"clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
"background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
"\n",
"# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
"sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
"\n",
"# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
"print(\"Background Information:\")\n",
"print(background_info)\n",
"print(\"Sample Characteristics Dictionary:\")\n",
"print(sample_characteristics_dict)\n"
]
},
{
"cell_type": "markdown",
"id": "445577fe",
"metadata": {},
"source": [
"### Step 2: Dataset Analysis and Clinical Feature Extraction"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "c7dfb039",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T05:13:50.970416Z",
"iopub.status.busy": "2025-03-25T05:13:50.970311Z",
"iopub.status.idle": "2025-03-25T05:13:50.977217Z",
"shell.execute_reply": "2025-03-25T05:13:50.976934Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Clinical Data Preview:\n",
"{'GSM1946756': [0.0], 'GSM1946757': [1.0], 'GSM1946758': [0.0], 'GSM1946759': [1.0], 'GSM1946760': [0.0], 'GSM1946761': [1.0], 'GSM1946762': [0.0], 'GSM1946763': [1.0], 'GSM1946764': [0.0], 'GSM1946765': [1.0], 'GSM1946766': [0.0], 'GSM1946767': [1.0], 'GSM1946768': [0.0], 'GSM1946769': [1.0], 'GSM1946770': [0.0], 'GSM1946771': [1.0], 'GSM1946772': [0.0], 'GSM1946773': [1.0], 'GSM1946774': [0.0], 'GSM1946775': [1.0], 'GSM1946776': [0.0], 'GSM1946777': [1.0], 'GSM1946778': [0.0], 'GSM1946779': [1.0], 'GSM1946780': [0.0], 'GSM1946781': [1.0], 'GSM1946782': [0.0], 'GSM1946783': [1.0], 'GSM1946784': [0.0], 'GSM1946785': [1.0]}\n",
"Clinical data saved to ../../output/preprocess/Esophageal_Cancer/clinical_data/GSE75241.csv\n"
]
}
],
"source": [
"# 1. Gene Expression Data Availability\n",
"# Based on the background information, this dataset contains gene expression data\n",
"# comparing esophageal squamous cell carcinoma tumor samples with non-malignant tissue\n",
"is_gene_available = True\n",
"\n",
"# 2. Variable Availability and Data Type Conversion\n",
"# 2.1 Identify the rows in the sample characteristics dictionary for each variable\n",
"\n",
"# For trait - tissue type (tumor vs normal)\n",
"trait_row = 1 # The key 1 has tumor vs non-malignant surrounding mucosa\n",
"\n",
"# For age - not available in the provided data\n",
"age_row = None # Age is not mentioned in the sample characteristics\n",
"\n",
"# For gender - not available in the provided data\n",
"gender_row = None # Gender is not mentioned in the sample characteristics\n",
"\n",
"# 2.2 Data Type Conversion Functions\n",
"\n",
"def convert_trait(value):\n",
" \"\"\"\n",
" Convert tissue type to binary:\n",
" 0 - nonmalignant surrounding mucosa (control)\n",
" 1 - esophageal tumor (case)\n",
" \"\"\"\n",
" if value is None or pd.isna(value):\n",
" return None\n",
" \n",
" # Extract the value after the colon\n",
" if \":\" in value:\n",
" value = value.split(\":\", 1)[1].strip()\n",
" \n",
" if \"tumor\" in value.lower():\n",
" return 1\n",
" elif \"nonmalignant\" in value.lower() or \"surrounding mucosa\" in value.lower():\n",
" return 0\n",
" else:\n",
" return None\n",
"\n",
"def convert_age(value):\n",
" \"\"\"Placeholder function for age conversion (not used)\"\"\"\n",
" return None\n",
"\n",
"def convert_gender(value):\n",
" \"\"\"Placeholder function for gender conversion (not used)\"\"\"\n",
" return None\n",
"\n",
"# 3. Save Metadata\n",
"# Determine trait data availability\n",
"is_trait_available = trait_row is not None\n",
"\n",
"# Save initial validation information\n",
"validate_and_save_cohort_info(\n",
" is_final=False,\n",
" cohort=cohort,\n",
" info_path=json_path,\n",
" is_gene_available=is_gene_available,\n",
" is_trait_available=is_trait_available\n",
")\n",
"\n",
"# 4. Clinical Feature Extraction\n",
"if trait_row is not None:\n",
" # Extract clinical features\n",
" clinical_df = geo_select_clinical_features(\n",
" clinical_df=clinical_data,\n",
" trait=trait,\n",
" trait_row=trait_row,\n",
" convert_trait=convert_trait,\n",
" age_row=age_row,\n",
" convert_age=convert_age, \n",
" gender_row=gender_row,\n",
" convert_gender=convert_gender\n",
" )\n",
" \n",
" # Preview the clinical dataframe\n",
" print(\"Clinical Data Preview:\")\n",
" print(preview_df(clinical_df))\n",
" \n",
" # Create directory if it doesn't exist\n",
" os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
" \n",
" # Save clinical data to CSV\n",
" clinical_df.to_csv(out_clinical_data_file)\n",
" print(f\"Clinical data saved to {out_clinical_data_file}\")\n"
]
},
{
"cell_type": "markdown",
"id": "02797370",
"metadata": {},
"source": [
"### Step 3: Gene Data Extraction"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "2af0a122",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T05:13:50.978352Z",
"iopub.status.busy": "2025-03-25T05:13:50.978252Z",
"iopub.status.idle": "2025-03-25T05:13:51.041615Z",
"shell.execute_reply": "2025-03-25T05:13:51.041182Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Found data marker at line 64\n",
"Header line: \"ID_REF\"\t\"GSM1946756\"\t\"GSM1946757\"\t\"GSM1946758\"\t\"GSM1946759\"\t\"GSM1946760\"\t\"GSM1946761\"\t\"GSM1946762\"\t\"GSM1946763\"\t\"GSM1946764\"\t\"GSM1946765\"\t\"GSM1946766\"\t\"GSM1946767\"\t\"GSM1946768\"\t\"GSM1946769\"\t\"GSM1946770\"\t\"GSM1946771\"\t\"GSM1946772\"\t\"GSM1946773\"\t\"GSM1946774\"\t\"GSM1946775\"\t\"GSM1946776\"\t\"GSM1946777\"\t\"GSM1946778\"\t\"GSM1946779\"\t\"GSM1946780\"\t\"GSM1946781\"\t\"GSM1946782\"\t\"GSM1946783\"\t\"GSM1946784\"\t\"GSM1946785\"\n",
"First data line: 2315554\t8.17671\t8.3064\t8.2427\t8.39671\t8.51383\t8.12902\t8.30535\t8.38525\t7.97932\t8.13759\t8.328\t8.35267\t8.23582\t8.12066\t8.45462\t7.89502\t7.98993\t8.2095\t8.26696\t7.91252\t8.22498\t8.40417\t8.08198\t8.26314\t8.35753\t8.09386\t8.06862\t7.72916\t8.21028\t8.10057\n",
"Index(['2315554', '2315633', '2315674', '2315739', '2315894', '2315918',\n",
" '2315951', '2316218', '2316245', '2316379', '2316558', '2316605',\n",
" '2316746', '2316905', '2316953', '2317246', '2317317', '2317434',\n",
" '2317472', '2317512'],\n",
" dtype='object', name='ID')\n"
]
}
],
"source": [
"# 1. Get the file paths for the SOFT file and matrix file\n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"\n",
"# 2. First, let's examine the structure of the matrix file to understand its format\n",
"import gzip\n",
"\n",
"# Peek at the first few lines of the file to understand its structure\n",
"with gzip.open(matrix_file, 'rt') as file:\n",
" # Read first 100 lines to find the header structure\n",
" for i, line in enumerate(file):\n",
" if '!series_matrix_table_begin' in line:\n",
" print(f\"Found data marker at line {i}\")\n",
" # Read the next line which should be the header\n",
" header_line = next(file)\n",
" print(f\"Header line: {header_line.strip()}\")\n",
" # And the first data line\n",
" first_data_line = next(file)\n",
" print(f\"First data line: {first_data_line.strip()}\")\n",
" break\n",
" if i > 100: # Limit search to first 100 lines\n",
" print(\"Matrix table marker not found in first 100 lines\")\n",
" break\n",
"\n",
"# 3. Now try to get the genetic data with better error handling\n",
"try:\n",
" gene_data = get_genetic_data(matrix_file)\n",
" print(gene_data.index[:20])\n",
"except KeyError as e:\n",
" print(f\"KeyError: {e}\")\n",
" \n",
" # Alternative approach: manually extract the data\n",
" print(\"\\nTrying alternative approach to read the gene data:\")\n",
" with gzip.open(matrix_file, 'rt') as file:\n",
" # Find the start of the data\n",
" for line in file:\n",
" if '!series_matrix_table_begin' in line:\n",
" break\n",
" \n",
" # Read the headers and data\n",
" import pandas as pd\n",
" df = pd.read_csv(file, sep='\\t', index_col=0)\n",
" print(f\"Column names: {df.columns[:5]}\")\n",
" print(f\"First 20 row IDs: {df.index[:20]}\")\n",
" gene_data = df\n"
]
},
{
"cell_type": "markdown",
"id": "f47d0721",
"metadata": {},
"source": [
"### Step 4: Gene Identifier Review"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "43d55899",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T05:13:51.042933Z",
"iopub.status.busy": "2025-03-25T05:13:51.042827Z",
"iopub.status.idle": "2025-03-25T05:13:51.044616Z",
"shell.execute_reply": "2025-03-25T05:13:51.044349Z"
}
},
"outputs": [],
"source": [
"# Looking at the identifiers in the gene expression data (2315554, 2315633, etc.)\n",
"# These appear to be numerical IDs rather than human gene symbols\n",
"# They are likely probe IDs from a microarray platform and need to be mapped to gene symbols\n",
"\n",
"requires_gene_mapping = True\n"
]
},
{
"cell_type": "markdown",
"id": "d97a8f65",
"metadata": {},
"source": [
"### Step 5: Gene Annotation"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "b4aea801",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T05:13:51.045841Z",
"iopub.status.busy": "2025-03-25T05:13:51.045744Z",
"iopub.status.idle": "2025-03-25T05:13:52.397509Z",
"shell.execute_reply": "2025-03-25T05:13:52.397149Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Examining SOFT file structure:\n",
"Line 0: ^DATABASE = GeoMiame\n",
"Line 1: !Database_name = Gene Expression Omnibus (GEO)\n",
"Line 2: !Database_institute = NCBI NLM NIH\n",
"Line 3: !Database_web_link = http://www.ncbi.nlm.nih.gov/geo\n",
"Line 4: !Database_email = [email protected]\n",
"Line 5: ^SERIES = GSE75241\n",
"Line 6: !Series_title = Gene expression profile of esophageal squamous cell carcinoma\n",
"Line 7: !Series_geo_accession = GSE75241\n",
"Line 8: !Series_status = Public on Jun 26 2019\n",
"Line 9: !Series_submission_date = Nov 20 2015\n",
"Line 10: !Series_last_update_date = Jan 13 2020\n",
"Line 11: !Series_pubmed_id = 29682174\n",
"Line 12: !Series_pubmed_id = 31901859\n",
"Line 13: !Series_summary = The goal was to identify the differently expressed genes between esophageal tumor and nonmalignant surrounding mucosa\n",
"Line 14: !Series_overall_design = 15 paired ESCC samples and matched nonmalignant mucosa were analyzed\n",
"Line 15: !Series_type = Expression profiling by array\n",
"Line 16: !Series_contributor = Pedro,P,Nicolau-Neto\n",
"Line 17: !Series_contributor = Paulo,P,Santos\n",
"Line 18: !Series_sample_id = GSM1946756\n",
"Line 19: !Series_sample_id = GSM1946757\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"Gene annotation preview:\n",
"{'ID': [2315100, 2315106, 2315109, 2315111, 2315113], 'GB_LIST': ['NR_024005,NR_034090,NR_024004,AK093685', 'DQ786314', nan, nan, 'DQ786265'], 'SPOT_ID': ['chr1:11884-14409', 'chr1:14760-15198', 'chr1:19408-19712', 'chr1:25142-25532', 'chr1:27563-27813'], 'seqname': ['chr1', 'chr1', 'chr1', 'chr1', 'chr1'], 'RANGE_GB': ['NC_000001.10', 'NC_000001.10', 'NC_000001.10', 'NC_000001.10', 'NC_000001.10'], 'RANGE_STRAND': ['+', '+', '+', '+', '+'], 'RANGE_START': ['11884', '14760', '19408', '25142', '27563'], 'RANGE_STOP': ['14409', '15198', '19712', '25532', '27813'], 'total_probes': ['20', '8', '4', '4', '4'], 'gene_assignment': ['NR_024005 // DDX11L2 // DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 11 like 2 // 2q13 // 84771 /// NR_034090 // DDX11L9 // DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 11 like 9 // 15q26.3 // 100288486 /// NR_024004 // DDX11L2 // DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 11 like 2 // 2q13 // 84771 /// AK093685 // DDX11L2 // DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 11 like 2 // 2q13 // 84771', '---', '---', '---', '---'], 'mrna_assignment': ['NR_024005 // RefSeq // Homo sapiens DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 11 like 2 (DDX11L2), transcript variant 2, non-coding RNA. // chr1 // 100 // 80 // 16 // 16 // 0 /// NR_034090 // RefSeq // Homo sapiens DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 11 like 9 (DDX11L9), non-coding RNA. // chr1 // 100 // 80 // 16 // 16 // 0 /// NR_024004 // RefSeq // Homo sapiens DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 11 like 2 (DDX11L2), transcript variant 1, non-coding RNA. // chr1 // 100 // 75 // 15 // 15 // 0 /// AK093685 // GenBank // Homo sapiens cDNA FLJ36366 fis, clone THYMU2007824. // chr1 // 94 // 80 // 15 // 16 // 0 /// ENST00000513886 // ENSEMBL // cdna:known chromosome:GRCh37:16:61555:64090:1 gene:ENSG00000233614 // chr1 // 100 // 80 // 16 // 16 // 0 /// ENST00000456328 // ENSEMBL // cdna:known chromosome:GRCh37:1:11869:14409:1 gene:ENSG00000223972 // chr1 // 100 // 80 // 16 // 16 // 0 /// ENST00000518655 // ENSEMBL // cdna:known chromosome:GRCh37:1:11869:14409:1 gene:ENSG00000253101 // chr1 // 100 // 80 // 16 // 16 // 0', 'DQ786314 // GenBank // Homo sapiens clone HLS_IMAGE_811138 mRNA sequence. // chr1 // 100 // 38 // 3 // 3 // 0', '---', '---', 'DQ786265 // GenBank // Homo sapiens clone HLS_IMAGE_298685 mRNA sequence. // chr1 // 100 // 100 // 4 // 4 // 0'], 'category': ['main', 'main', '---', '---', 'main']}\n"
]
}
],
"source": [
"# 1. Let's first examine the structure of the SOFT file before trying to parse it\n",
"import gzip\n",
"\n",
"# Look at the first few lines of the SOFT file to understand its structure\n",
"print(\"Examining SOFT file structure:\")\n",
"try:\n",
" with gzip.open(soft_file, 'rt') as file:\n",
" # Read first 20 lines to understand the file structure\n",
" for i, line in enumerate(file):\n",
" if i < 20:\n",
" print(f\"Line {i}: {line.strip()}\")\n",
" else:\n",
" break\n",
"except Exception as e:\n",
" print(f\"Error reading SOFT file: {e}\")\n",
"\n",
"# 2. Now let's try a more robust approach to extract the gene annotation\n",
"# Instead of using the library function which failed, we'll implement a custom approach\n",
"try:\n",
" # First, look for the platform section which contains gene annotation\n",
" platform_data = []\n",
" with gzip.open(soft_file, 'rt') as file:\n",
" in_platform_section = False\n",
" for line in file:\n",
" if line.startswith('^PLATFORM'):\n",
" in_platform_section = True\n",
" continue\n",
" if in_platform_section and line.startswith('!platform_table_begin'):\n",
" # Next line should be the header\n",
" header = next(file).strip()\n",
" platform_data.append(header)\n",
" # Read until the end of the platform table\n",
" for table_line in file:\n",
" if table_line.startswith('!platform_table_end'):\n",
" break\n",
" platform_data.append(table_line.strip())\n",
" break\n",
" \n",
" # If we found platform data, convert it to a DataFrame\n",
" if platform_data:\n",
" import pandas as pd\n",
" import io\n",
" platform_text = '\\n'.join(platform_data)\n",
" gene_annotation = pd.read_csv(io.StringIO(platform_text), delimiter='\\t', \n",
" low_memory=False, on_bad_lines='skip')\n",
" print(\"\\nGene annotation preview:\")\n",
" print(preview_df(gene_annotation))\n",
" else:\n",
" print(\"Could not find platform table in SOFT file\")\n",
" \n",
" # Try an alternative approach - extract mapping from other sections\n",
" with gzip.open(soft_file, 'rt') as file:\n",
" for line in file:\n",
" if 'ANNOTATION information' in line or 'annotation information' in line:\n",
" print(f\"Found annotation information: {line.strip()}\")\n",
" if line.startswith('!Platform_title') or line.startswith('!platform_title'):\n",
" print(f\"Platform title: {line.strip()}\")\n",
" \n",
"except Exception as e:\n",
" print(f\"Error processing gene annotation: {e}\")\n"
]
},
{
"cell_type": "markdown",
"id": "dc9313e4",
"metadata": {},
"source": [
"### Step 6: Gene Identifier Mapping"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "4cf703d9",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T05:13:52.398861Z",
"iopub.status.busy": "2025-03-25T05:13:52.398734Z",
"iopub.status.idle": "2025-03-25T05:13:55.552990Z",
"shell.execute_reply": "2025-03-25T05:13:55.552515Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Gene annotation columns: ['ID', 'GB_LIST', 'SPOT_ID', 'seqname', 'RANGE_GB', 'RANGE_STRAND', 'RANGE_START', 'RANGE_STOP', 'total_probes', 'gene_assignment', 'mrna_assignment', 'category']\n",
"Mapping dataframe shape: (316481, 2)\n",
"First few rows of mapping:\n",
" ID Gene\n",
"0 2315100 NR_024005 // DDX11L2 // DEAD/H (Asp-Glu-Ala-As...\n",
"1 2315106 ---\n",
"2 2315109 ---\n",
"3 2315111 ---\n",
"4 2315113 ---\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Gene expression data shape after mapping: (48895, 30)\n",
"First few rows of gene expression data:\n",
" GSM1946756 GSM1946757 GSM1946758 GSM1946759 GSM1946760 GSM1946761 \\\n",
"Gene \n",
"A- 19.686233 21.078992 19.644611 19.255770 19.082776 19.978018 \n",
"A-2 3.041177 3.179220 3.144313 3.210930 3.121263 3.458567 \n",
"A-52 4.624367 4.627967 4.647400 4.688933 4.598800 4.648167 \n",
"A-E 1.734940 1.726010 1.729277 1.715336 1.663119 1.794793 \n",
"A-I 6.196227 6.294127 6.293147 6.598947 6.161653 6.351923 \n",
"\n",
" GSM1946762 GSM1946763 GSM1946764 GSM1946765 ... GSM1946776 \\\n",
"Gene ... \n",
"A- 19.205867 19.183984 19.728438 19.648668 ... 19.475774 \n",
"A-2 3.038037 3.072120 3.068183 3.080643 ... 3.016570 \n",
"A-52 4.695467 4.721133 4.626467 4.796533 ... 4.695800 \n",
"A-E 1.751473 1.746305 1.639704 1.660835 ... 1.796903 \n",
"A-I 6.257723 6.555667 6.270857 6.587713 ... 6.281370 \n",
"\n",
" GSM1946777 GSM1946778 GSM1946779 GSM1946780 GSM1946781 GSM1946782 \\\n",
"Gene \n",
"A- 19.881772 19.397177 20.176165 19.485679 19.773278 20.317010 \n",
"A-2 3.227047 3.088177 3.113230 3.013857 3.107053 3.052563 \n",
"A-52 4.711133 4.706633 4.729300 4.625967 4.579533 4.736200 \n",
"A-E 1.887610 1.749953 1.701367 1.706467 1.683693 1.708582 \n",
"A-I 6.410690 6.281490 6.437733 6.231920 6.498627 6.332860 \n",
"\n",
" GSM1946783 GSM1946784 GSM1946785 \n",
"Gene \n",
"A- 20.407381 19.243382 19.567424 \n",
"A-2 3.206957 3.061277 3.094650 \n",
"A-52 4.700967 4.663533 4.680933 \n",
"A-E 1.644940 1.774332 1.727359 \n",
"A-I 6.451783 6.306790 6.386287 \n",
"\n",
"[5 rows x 30 columns]\n",
"Gene expression data shape after normalization: (18418, 30)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Gene expression data saved to ../../output/preprocess/Esophageal_Cancer/gene_data/GSE75241.csv\n"
]
}
],
"source": [
"# 1. Identify the columns for gene IDs and gene symbols in the annotation dataframe\n",
"# Based on the preview, we need:\n",
"# - 'ID' column for probe IDs which matches the gene expression data index\n",
"# - 'gene_assignment' column which contains gene symbols\n",
"\n",
"# First, let's parse the gene annotation properly \n",
"gene_annotation = get_gene_annotation(soft_file)\n",
"\n",
"# Display the columns to confirm we have the right ones\n",
"print(\"Gene annotation columns:\", gene_annotation.columns.tolist())\n",
"\n",
"# 2. Create a mapping dataframe with probe IDs and gene symbols\n",
"# Extract the ID column and gene_assignment column\n",
"if 'ID' in gene_annotation.columns and 'gene_assignment' in gene_annotation.columns:\n",
" mapping_df = get_gene_mapping(gene_annotation, 'ID', 'gene_assignment')\n",
" print(f\"Mapping dataframe shape: {mapping_df.shape}\")\n",
" print(\"First few rows of mapping:\")\n",
" print(mapping_df.head())\n",
" \n",
" # 3. Apply the gene mapping to convert probe-level measurements to gene expression data\n",
" # This handles the many-to-many relationships as described\n",
" gene_data = apply_gene_mapping(gene_data, mapping_df)\n",
" print(f\"Gene expression data shape after mapping: {gene_data.shape}\")\n",
" print(\"First few rows of gene expression data:\")\n",
" print(gene_data.head())\n",
" \n",
" # Normalize gene symbols to official symbols and aggregate duplicate genes\n",
" gene_data = normalize_gene_symbols_in_index(gene_data)\n",
" print(f\"Gene expression data shape after normalization: {gene_data.shape}\")\n",
" \n",
" # Save the gene expression data\n",
" os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
" gene_data.to_csv(out_gene_data_file)\n",
" print(f\"Gene expression data saved to {out_gene_data_file}\")\n",
"else:\n",
" print(\"Error: Required columns not found in gene annotation dataframe\")\n",
" print(\"Available columns:\", gene_annotation.columns.tolist())\n"
]
},
{
"cell_type": "markdown",
"id": "d11e3914",
"metadata": {},
"source": [
"### Step 7: Data Normalization and Linking"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "3577addf",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T05:13:55.554512Z",
"iopub.status.busy": "2025-03-25T05:13:55.554210Z",
"iopub.status.idle": "2025-03-25T05:14:03.639294Z",
"shell.execute_reply": "2025-03-25T05:14:03.638706Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Normalized gene data shape: (18418, 30)\n",
"First few genes with their expression values after normalization:\n",
" GSM1946756 GSM1946757 GSM1946758 GSM1946759 GSM1946760 \\\n",
"Gene \n",
"A1BG 2.011265 1.946160 1.979805 2.054520 1.964573 \n",
"A1BG-AS1 2.011265 1.946160 1.979805 2.054520 1.964573 \n",
"A1CF 1.566023 1.530593 1.628517 1.542593 1.563090 \n",
"A2M 4.416360 4.980305 4.217160 4.178945 4.489790 \n",
"A2ML1 6.222100 5.579050 6.362350 5.534400 6.413550 \n",
"\n",
" GSM1946761 GSM1946762 GSM1946763 GSM1946764 GSM1946765 ... \\\n",
"Gene ... \n",
"A1BG 1.938865 1.984317 2.031433 1.959395 1.96234 ... \n",
"A1BG-AS1 1.938865 1.984317 2.031433 1.959395 1.96234 ... \n",
"A1CF 1.496433 1.624193 1.644417 1.559427 1.51756 ... \n",
"A2M 5.703700 3.795370 5.072700 4.543965 5.35270 ... \n",
"A2ML1 5.610750 6.239700 5.720800 6.172350 5.47575 ... \n",
"\n",
" GSM1946776 GSM1946777 GSM1946778 GSM1946779 GSM1946780 \\\n",
"Gene \n",
"A1BG 1.994905 1.950978 2.016523 1.996433 1.952212 \n",
"A1BG-AS1 1.994905 1.950978 2.016523 1.996433 1.952212 \n",
"A1CF 1.684330 1.558917 1.637427 1.563087 1.576770 \n",
"A2M 4.134060 4.864150 4.580130 5.123950 4.257135 \n",
"A2ML1 6.057000 4.311355 6.217400 2.849605 6.131650 \n",
"\n",
" GSM1946781 GSM1946782 GSM1946783 GSM1946784 GSM1946785 \n",
"Gene \n",
"A1BG 1.94519 1.977313 1.872837 2.027700 1.996077 \n",
"A1BG-AS1 1.94519 1.977313 1.872837 2.027700 1.996077 \n",
"A1CF 1.59521 1.600170 1.479100 1.570997 1.578763 \n",
"A2M 5.41210 4.288080 5.623400 3.803960 4.879335 \n",
"A2ML1 5.16890 6.133500 5.276850 6.085500 5.920700 \n",
"\n",
"[5 rows x 30 columns]\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Normalized gene data saved to ../../output/preprocess/Esophageal_Cancer/gene_data/GSE75241.csv\n",
"Raw clinical data shape: (3, 31)\n",
"Clinical features:\n",
" GSM1946756 GSM1946757 GSM1946758 GSM1946759 GSM1946760 \\\n",
"Esophageal_Cancer 0.0 1.0 0.0 1.0 0.0 \n",
"\n",
" GSM1946761 GSM1946762 GSM1946763 GSM1946764 GSM1946765 \\\n",
"Esophageal_Cancer 1.0 0.0 1.0 0.0 1.0 \n",
"\n",
" ... GSM1946776 GSM1946777 GSM1946778 GSM1946779 \\\n",
"Esophageal_Cancer ... 0.0 1.0 0.0 1.0 \n",
"\n",
" GSM1946780 GSM1946781 GSM1946782 GSM1946783 GSM1946784 \\\n",
"Esophageal_Cancer 0.0 1.0 0.0 1.0 0.0 \n",
"\n",
" GSM1946785 \n",
"Esophageal_Cancer 1.0 \n",
"\n",
"[1 rows x 30 columns]\n",
"Clinical features saved to ../../output/preprocess/Esophageal_Cancer/clinical_data/GSE75241.csv\n",
"Linked data shape: (30, 18419)\n",
"Linked data preview (first 5 rows, first 5 columns):\n",
" Esophageal_Cancer A1BG A1BG-AS1 A1CF A2M\n",
"GSM1946756 0.0 2.011265 2.011265 1.566023 4.416360\n",
"GSM1946757 1.0 1.946160 1.946160 1.530593 4.980305\n",
"GSM1946758 0.0 1.979805 1.979805 1.628517 4.217160\n",
"GSM1946759 1.0 2.054520 2.054520 1.542593 4.178945\n",
"GSM1946760 0.0 1.964573 1.964573 1.563090 4.489790\n",
"Missing values before handling:\n",
" Trait (Esophageal_Cancer) missing: 0 out of 30\n",
" Genes with >20% missing: 0\n",
" Samples with >5% missing genes: 0\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Data shape after handling missing values: (30, 18419)\n",
"For the feature 'Esophageal_Cancer', the least common label is '0.0' with 15 occurrences. This represents 50.00% of the dataset.\n",
"The distribution of the feature 'Esophageal_Cancer' in this dataset is fine.\n",
"\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Linked data saved to ../../output/preprocess/Esophageal_Cancer/GSE75241.csv\n"
]
}
],
"source": [
"# 1. Normalize gene symbols in the gene expression data\n",
"normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n",
"print(f\"Normalized gene data shape: {normalized_gene_data.shape}\")\n",
"print(\"First few genes with their expression values after normalization:\")\n",
"print(normalized_gene_data.head())\n",
"\n",
"# Save the normalized gene data\n",
"os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
"normalized_gene_data.to_csv(out_gene_data_file)\n",
"print(f\"Normalized gene data saved to {out_gene_data_file}\")\n",
"\n",
"# 2. Check if trait data is available before proceeding with clinical data extraction\n",
"if trait_row is None:\n",
" print(\"Trait row is None. Cannot extract trait information from clinical data.\")\n",
" # Create an empty dataframe for clinical features\n",
" clinical_features = pd.DataFrame()\n",
" \n",
" # Create an empty dataframe for linked data\n",
" linked_data = pd.DataFrame()\n",
" \n",
" # Validate and save cohort info\n",
" validate_and_save_cohort_info(\n",
" is_final=True, \n",
" cohort=cohort, \n",
" info_path=json_path, \n",
" is_gene_available=True, \n",
" is_trait_available=False, # Trait data is not available\n",
" is_biased=True, # Not applicable but required\n",
" df=pd.DataFrame(), # Empty dataframe\n",
" note=\"Dataset contains gene expression data but lacks clear trait indicators for Duchenne Muscular Dystrophy status.\"\n",
" )\n",
" print(\"Data was determined to be unusable due to missing trait indicators and was not saved\")\n",
"else:\n",
" try:\n",
" # Get the file paths for the matrix file to extract clinical data\n",
" _, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
" \n",
" # Get raw clinical data from the matrix file\n",
" _, clinical_raw = get_background_and_clinical_data(matrix_file)\n",
" \n",
" # Verify clinical data structure\n",
" print(\"Raw clinical data shape:\", clinical_raw.shape)\n",
" \n",
" # Extract clinical features using the defined conversion functions\n",
" clinical_features = geo_select_clinical_features(\n",
" clinical_df=clinical_raw,\n",
" trait=trait,\n",
" trait_row=trait_row,\n",
" convert_trait=convert_trait,\n",
" age_row=age_row,\n",
" convert_age=convert_age,\n",
" gender_row=gender_row,\n",
" convert_gender=convert_gender\n",
" )\n",
" \n",
" print(\"Clinical features:\")\n",
" print(clinical_features)\n",
" \n",
" # Save clinical features to file\n",
" os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
" clinical_features.to_csv(out_clinical_data_file)\n",
" print(f\"Clinical features saved to {out_clinical_data_file}\")\n",
" \n",
" # 3. Link clinical and genetic data\n",
" linked_data = geo_link_clinical_genetic_data(clinical_features, normalized_gene_data)\n",
" print(f\"Linked data shape: {linked_data.shape}\")\n",
" print(\"Linked data preview (first 5 rows, first 5 columns):\")\n",
" print(linked_data.iloc[:5, :5])\n",
" \n",
" # 4. Handle missing values\n",
" print(\"Missing values before handling:\")\n",
" print(f\" Trait ({trait}) missing: {linked_data[trait].isna().sum()} out of {len(linked_data)}\")\n",
" if 'Age' in linked_data.columns:\n",
" print(f\" Age missing: {linked_data['Age'].isna().sum()} out of {len(linked_data)}\")\n",
" if 'Gender' in linked_data.columns:\n",
" print(f\" Gender missing: {linked_data['Gender'].isna().sum()} out of {len(linked_data)}\")\n",
" \n",
" gene_cols = [col for col in linked_data.columns if col not in [trait, 'Age', 'Gender']]\n",
" print(f\" Genes with >20% missing: {sum(linked_data[gene_cols].isna().mean() > 0.2)}\")\n",
" print(f\" Samples with >5% missing genes: {sum(linked_data[gene_cols].isna().mean(axis=1) > 0.05)}\")\n",
" \n",
" cleaned_data = handle_missing_values(linked_data, trait)\n",
" print(f\"Data shape after handling missing values: {cleaned_data.shape}\")\n",
" \n",
" # 5. Evaluate bias in trait and demographic features\n",
" is_trait_biased = False\n",
" if len(cleaned_data) > 0:\n",
" trait_biased, cleaned_data = judge_and_remove_biased_features(cleaned_data, trait)\n",
" is_trait_biased = trait_biased\n",
" else:\n",
" print(\"No data remains after handling missing values.\")\n",
" is_trait_biased = True\n",
" \n",
" # 6. Final validation and save\n",
" is_usable = validate_and_save_cohort_info(\n",
" is_final=True, \n",
" cohort=cohort, \n",
" info_path=json_path, \n",
" is_gene_available=True, \n",
" is_trait_available=True, \n",
" is_biased=is_trait_biased, \n",
" df=cleaned_data,\n",
" note=\"Dataset contains gene expression data comparing Duchenne muscular dystrophy vs healthy samples.\"\n",
" )\n",
" \n",
" # 7. Save if usable\n",
" if is_usable and len(cleaned_data) > 0:\n",
" os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
" cleaned_data.to_csv(out_data_file)\n",
" print(f\"Linked data saved to {out_data_file}\")\n",
" else:\n",
" print(\"Data was determined to be unusable or empty and was not saved\")\n",
" \n",
" except Exception as e:\n",
" print(f\"Error processing data: {e}\")\n",
" # Handle the error case by still recording cohort info\n",
" validate_and_save_cohort_info(\n",
" is_final=True, \n",
" cohort=cohort, \n",
" info_path=json_path, \n",
" is_gene_available=True, \n",
" is_trait_available=False, # Mark as not available due to processing issues\n",
" is_biased=True, \n",
" df=pd.DataFrame(), # Empty dataframe\n",
" note=f\"Error processing data: {str(e)}\"\n",
" )\n",
" print(\"Data was determined to be unusable and was not saved\")"
]
}
],
"metadata": {
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.16"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|