File size: 32,330 Bytes
f88156f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "fd013f4f",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T07:02:29.371289Z",
     "iopub.status.busy": "2025-03-25T07:02:29.371112Z",
     "iopub.status.idle": "2025-03-25T07:02:29.535490Z",
     "shell.execute_reply": "2025-03-25T07:02:29.535033Z"
    }
   },
   "outputs": [],
   "source": [
    "import sys\n",
    "import os\n",
    "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
    "\n",
    "# Path Configuration\n",
    "from tools.preprocess import *\n",
    "\n",
    "# Processing context\n",
    "trait = \"Breast_Cancer\"\n",
    "cohort = \"GSE248830\"\n",
    "\n",
    "# Input paths\n",
    "in_trait_dir = \"../../input/GEO/Breast_Cancer\"\n",
    "in_cohort_dir = \"../../input/GEO/Breast_Cancer/GSE248830\"\n",
    "\n",
    "# Output paths\n",
    "out_data_file = \"../../output/preprocess/Breast_Cancer/GSE248830.csv\"\n",
    "out_gene_data_file = \"../../output/preprocess/Breast_Cancer/gene_data/GSE248830.csv\"\n",
    "out_clinical_data_file = \"../../output/preprocess/Breast_Cancer/clinical_data/GSE248830.csv\"\n",
    "json_path = \"../../output/preprocess/Breast_Cancer/cohort_info.json\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "5e6aedde",
   "metadata": {},
   "source": [
    "### Step 1: Initial Data Loading"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "9688b359",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T07:02:29.536782Z",
     "iopub.status.busy": "2025-03-25T07:02:29.536634Z",
     "iopub.status.idle": "2025-03-25T07:02:29.553211Z",
     "shell.execute_reply": "2025-03-25T07:02:29.552835Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Background Information:\n",
      "!Series_title\t\"Unlocking Molecular mechanisms and identifying druggable targets in matched-paired brain metastasis of Breast and Lung cancers \"\n",
      "!Series_summary\t\"Introduction: The incidence of brain metastases in cancer patients is increasing, with lung and breast cancer being the most common sources. Despite advancements in targeted therapies, the prognosis remains poor, highlighting the importance to investigate the underlying mechanisms in brain metastases. The aim of this study was to investigate the differences in the molecular mechanisms involved in brain metastasis of breast and lung cancers. In addition, we aimed to identify cancer lineage-specific druggable targets in the brain metastasis. Methods: To that aim, a cohort of 44 FFPE tissue samples, including 22 breast cancer and 22 lung adenocarcinoma (LUAD) and their matched-paired brain metastases were collected. Targeted gene expression profiles of primary tumors were compared to their matched-paired brain metastases samples using nCounter PanCancer IO 360™ Panel of NanoString technologies. Pathway analysis was performed using gene set analysis (GSA) and gene set enrichment analysis (GSEA). The validation was performed by using Immunohistochemistry (IHC) to confirm the expression of immune checkpoint inhibitors. Results: Our results revealed the significant upregulation of cancer-related genes in primary tumors compared to their matched-paired brain metastases (adj. p ≤ 0.05). We found that upregulated differentially expressed genes in breast cancer brain metastasis (BM-BC) and brain metastasis from lung adenocarcinoma (BM-LUAD) were associated with the metabolic stress pathway, particularly related to the glycolysis. Additionally, we found that the upregulated genes in BM-BC and BM-LUAD played roles in immune response regulation, tumor growth, and proliferation. Importantly, we identified high expression of the immune checkpoint VTCN1 in BM-BC, and VISTA, IDO1, NT5E, and HDAC3 in BM-LUAD. Validation using immunohistochemistry further supported these findings. Conclusion: In conclusion, the findings highlight the significance of using matched-paired samples to identify cancer lineage-specific therapies that may improve brain metastasis patients outcomes.\"\n",
      "!Series_overall_design\t\"RNA was extracted from FFPE samples of (primary LUAD and their matched paired brain metastasis n=22, primary BC and their matched paired brain metastasis n=22)\"\n",
      "Sample Characteristics Dictionary:\n",
      "{0: ['age at diagnosis: 49', 'age at diagnosis: 44', 'age at diagnosis: 41', 'age at diagnosis: 40', 'age at diagnosis: 48', 'age at diagnosis: 42', 'age at diagnosis: 47', 'age at diagnosis: 53', 'age at diagnosis: 74', 'age at diagnosis: 58', 'age at diagnosis: 51', 'age at diagnosis: 55', 'age at diagnosis: 46', 'age at diagnosis: 59', 'age at diagnosis: 50', 'age at diagnosis: 57', 'age at diagnosis: 60', 'age at diagnosis: 69', 'age at diagnosis: n.a.', 'age at diagnosis: 65', 'age at diagnosis: 37', 'age at diagnosis: 63', 'age at diagnosis: 70', 'age at diagnosis: 66', 'age at diagnosis: 64'], 1: ['Sex: female', 'Sex: male'], 2: ['histology: TNBC', 'histology: ER+ PR+ HER2-', 'histology: Unknown', 'histology: ER- PR- HER2+', 'histology: ER+ PR-HER2+', 'histology: ER+ PR- HER2-', 'histology: ER- PR+ HER2-', 'histology: adenocaricnoma'], 3: ['smoking status: n.a', 'smoking status: former-smoker', 'smoking status: smoker', 'smoking status: Never smoking', 'smoking status: unknown', 'smoking status: former-roker'], 4: ['treatment after surgery of bm: surgery + chemotherpy', 'treatment after surgery of bm: surgery +  chemotherpy + Radiotherapy', 'treatment after surgery of bm: surgery + chemotherapy + Radiotherapy', 'treatment after surgery of bm: surgery', 'treatment after surgery of bm: surgery +  chemotherapy + Radiotherapy', 'treatment after surgery of bm: surgery + chemotherapy', 'treatment after surgery of bm: surgery + chemotherpy + Radiotherapy', 'treatment after surgery of bm: surgery + chemotheapy + Radiotherapy', 'treatment after surgery of bm: Chemoterapy', 'treatment after surgery of bm: Radiotherapy & Chemoterapy', 'treatment after surgery of bm: Radiotherapy', 'treatment after surgery of bm: Other', 'treatment after surgery of bm: Surgery & Chemotherapy & Radiotherapy', 'treatment after surgery of bm: surgery & Radiotherapy', 'treatment after surgery of bm: surgery & Radiochemotherapy', 'treatment after surgery of bm: No treatment', 'treatment after surgery of bm: WBRT', 'treatment after surgery of bm: SRT']}\n"
     ]
    }
   ],
   "source": [
    "from tools.preprocess import *\n",
    "# 1. Identify the paths to the SOFT file and the matrix file\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. Read the matrix file to obtain background information and sample characteristics data\n",
    "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
    "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
    "background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
    "\n",
    "# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
    "sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
    "\n",
    "# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
    "print(\"Background Information:\")\n",
    "print(background_info)\n",
    "print(\"Sample Characteristics Dictionary:\")\n",
    "print(sample_characteristics_dict)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "345abae8",
   "metadata": {},
   "source": [
    "### Step 2: Dataset Analysis and Clinical Feature Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "d14a6b01",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T07:02:29.554176Z",
     "iopub.status.busy": "2025-03-25T07:02:29.554062Z",
     "iopub.status.idle": "2025-03-25T07:02:29.579894Z",
     "shell.execute_reply": "2025-03-25T07:02:29.579353Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Preview of selected clinical data:\n",
      "{'GSM7920782': [1.0, 49.0, 0.0], 'GSM7920783': [1.0, 44.0, 0.0], 'GSM7920784': [nan, 41.0, 0.0], 'GSM7920785': [1.0, 40.0, 0.0], 'GSM7920786': [1.0, 48.0, 0.0], 'GSM7920787': [nan, 42.0, 0.0], 'GSM7920788': [1.0, 47.0, 0.0], 'GSM7920789': [1.0, 53.0, 0.0], 'GSM7920790': [1.0, 41.0, 0.0], 'GSM7920791': [1.0, 74.0, 0.0], 'GSM7920792': [1.0, 58.0, 0.0], 'GSM7920793': [1.0, 51.0, 0.0], 'GSM7920794': [1.0, 55.0, 0.0], 'GSM7920795': [nan, 46.0, 0.0], 'GSM7920796': [1.0, 46.0, 0.0], 'GSM7920797': [1.0, 48.0, 0.0], 'GSM7920798': [1.0, 44.0, 0.0], 'GSM7920799': [1.0, 49.0, 0.0], 'GSM7920800': [1.0, 59.0, 0.0], 'GSM7920801': [1.0, 50.0, 0.0], 'GSM7920802': [1.0, 74.0, 0.0], 'GSM7920803': [1.0, 46.0, 0.0], 'GSM7920804': [0.0, 40.0, 0.0], 'GSM7920805': [0.0, 57.0, 1.0], 'GSM7920806': [0.0, 60.0, 1.0], 'GSM7920807': [0.0, 55.0, 0.0], 'GSM7920808': [0.0, 69.0, 0.0], 'GSM7920809': [0.0, nan, 0.0], 'GSM7920810': [0.0, nan, 1.0], 'GSM7920811': [0.0, 57.0, 1.0], 'GSM7920812': [0.0, nan, 0.0], 'GSM7920813': [0.0, 65.0, 1.0], 'GSM7920814': [0.0, 37.0, 1.0], 'GSM7920815': [0.0, 46.0, 0.0], 'GSM7920816': [0.0, 63.0, 1.0], 'GSM7920817': [0.0, 60.0, 1.0], 'GSM7920818': [0.0, 58.0, 0.0], 'GSM7920819': [0.0, 70.0, 0.0], 'GSM7920820': [0.0, 66.0, 0.0], 'GSM7920821': [0.0, 64.0, 1.0], 'GSM7920822': [0.0, 60.0, 1.0], 'GSM7920823': [0.0, 50.0, 0.0], 'GSM7920824': [0.0, 66.0, 1.0], 'GSM7920825': [0.0, 74.0, 1.0]}\n",
      "Clinical data saved to ../../output/preprocess/Breast_Cancer/clinical_data/GSE248830.csv\n"
     ]
    }
   ],
   "source": [
    "# 1. Gene Expression Data Availability\n",
    "# Based on the background information, this appears to be gene expression data\n",
    "# The summary mentions \"Targeted gene expression profiles\" using nCounter PanCancer IO 360™ Panel\n",
    "is_gene_available = True\n",
    "\n",
    "# 2. Variable Availability and Data Type Conversion\n",
    "\n",
    "# 2.1 Data Availability\n",
    "# For trait, we can use histology which contains breast cancer information\n",
    "trait_row = 2  # histology\n",
    "age_row = 0  # age at diagnosis\n",
    "gender_row = 1  # Sex\n",
    "\n",
    "# 2.2 Data Type Conversion Functions\n",
    "\n",
    "def convert_trait(value):\n",
    "    \"\"\"Convert breast cancer histology to binary (1 for breast cancer, 0 for others)\"\"\"\n",
    "    if value is None or 'unknown' in value.lower():\n",
    "        return None\n",
    "    \n",
    "    if ':' in value:\n",
    "        value = value.split(':', 1)[1].strip()\n",
    "    \n",
    "    # If it's adenocarcinoma (lung cancer), it's not breast cancer\n",
    "    if 'adenocaricnoma' in value.lower():\n",
    "        return 0\n",
    "    \n",
    "    # If it contains any breast cancer markers, it's breast cancer\n",
    "    if any(marker in value.lower() for marker in ['tnbc', 'er+', 'er-', 'pr+', 'pr-', 'her2+', 'her2-']):\n",
    "        return 1\n",
    "    \n",
    "    return None\n",
    "\n",
    "def convert_age(value):\n",
    "    \"\"\"Convert age to continuous numeric value\"\"\"\n",
    "    if value is None:\n",
    "        return None\n",
    "    \n",
    "    if ':' in value:\n",
    "        value = value.split(':', 1)[1].strip()\n",
    "    \n",
    "    if value.lower() in ['n.a', 'n.a.', 'unknown']:\n",
    "        return None\n",
    "    \n",
    "    try:\n",
    "        return float(value)\n",
    "    except ValueError:\n",
    "        return None\n",
    "\n",
    "def convert_gender(value):\n",
    "    \"\"\"Convert gender to binary (0 for female, 1 for male)\"\"\"\n",
    "    if value is None:\n",
    "        return None\n",
    "    \n",
    "    if ':' in value:\n",
    "        value = value.split(':', 1)[1].strip().lower()\n",
    "    \n",
    "    if value == 'female':\n",
    "        return 0\n",
    "    elif value == 'male':\n",
    "        return 1\n",
    "    else:\n",
    "        return None\n",
    "\n",
    "# 3. Save Metadata\n",
    "# Determine if trait data is available\n",
    "is_trait_available = trait_row is not None\n",
    "\n",
    "# Validate and save cohort information\n",
    "validate_and_save_cohort_info(\n",
    "    is_final=False,\n",
    "    cohort=cohort,\n",
    "    info_path=json_path,\n",
    "    is_gene_available=is_gene_available,\n",
    "    is_trait_available=is_trait_available\n",
    ")\n",
    "\n",
    "# 4. Clinical Feature Extraction\n",
    "if trait_row is not None:\n",
    "    # Extract clinical features\n",
    "    selected_clinical_df = geo_select_clinical_features(\n",
    "        clinical_df=clinical_data,\n",
    "        trait=trait,\n",
    "        trait_row=trait_row,\n",
    "        convert_trait=convert_trait,\n",
    "        age_row=age_row,\n",
    "        convert_age=convert_age,\n",
    "        gender_row=gender_row,\n",
    "        convert_gender=convert_gender\n",
    "    )\n",
    "    \n",
    "    # Preview the extracted clinical data\n",
    "    preview = preview_df(selected_clinical_df)\n",
    "    print(\"Preview of selected clinical data:\")\n",
    "    print(preview)\n",
    "    \n",
    "    # Save the clinical data to CSV\n",
    "    os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "    selected_clinical_df.to_csv(out_clinical_data_file, index=False)\n",
    "    print(f\"Clinical data saved to {out_clinical_data_file}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "1fc1a34f",
   "metadata": {},
   "source": [
    "### Step 3: Gene Data Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "d2caea7d",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T07:02:29.581408Z",
     "iopub.status.busy": "2025-03-25T07:02:29.581294Z",
     "iopub.status.idle": "2025-03-25T07:02:29.596602Z",
     "shell.execute_reply": "2025-03-25T07:02:29.596141Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "SOFT file: ../../input/GEO/Breast_Cancer/GSE248830/GSE248830_family.soft.gz\n",
      "Matrix file: ../../input/GEO/Breast_Cancer/GSE248830/GSE248830_series_matrix.txt.gz\n",
      "Found the matrix table marker at line 58\n",
      "Gene data shape: (754, 44)\n",
      "First 20 gene/probe identifiers:\n",
      "['A2M', 'ACVR1C', 'ADAM12', 'ADGRE1', 'ADM', 'ADORA2A', 'AKT1', 'ALDOA', 'ALDOC', 'ANGPT1', 'ANGPT2', 'ANGPTL4', 'ANLN', 'APC', 'APH1B', 'API5', 'APLNR', 'APOE', 'APOL6', 'AQP9']\n"
     ]
    }
   ],
   "source": [
    "# 1. Identify the paths to the SOFT file and the matrix file\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "print(f\"SOFT file: {soft_file}\")\n",
    "print(f\"Matrix file: {matrix_file}\")\n",
    "\n",
    "# Set gene availability flag\n",
    "is_gene_available = True  # Initially assume gene data is available\n",
    "\n",
    "# First check if the matrix file contains the expected marker\n",
    "found_marker = False\n",
    "marker_row = None\n",
    "try:\n",
    "    with gzip.open(matrix_file, 'rt') as file:\n",
    "        for i, line in enumerate(file):\n",
    "            if \"!series_matrix_table_begin\" in line:\n",
    "                found_marker = True\n",
    "                marker_row = i\n",
    "                print(f\"Found the matrix table marker at line {i}\")\n",
    "                break\n",
    "    \n",
    "    if not found_marker:\n",
    "        print(\"Warning: Could not find '!series_matrix_table_begin' marker in the file.\")\n",
    "        is_gene_available = False\n",
    "        \n",
    "    # If marker was found, try to extract gene data\n",
    "    if is_gene_available:\n",
    "        try:\n",
    "            # Try using the library function\n",
    "            gene_data = get_genetic_data(matrix_file)\n",
    "            \n",
    "            if gene_data.shape[0] == 0:\n",
    "                print(\"Warning: Extracted gene data has 0 rows.\")\n",
    "                is_gene_available = False\n",
    "            else:\n",
    "                print(f\"Gene data shape: {gene_data.shape}\")\n",
    "                # Print the first 20 gene/probe identifiers\n",
    "                print(\"First 20 gene/probe identifiers:\")\n",
    "                print(gene_data.index[:20].tolist())\n",
    "        except Exception as e:\n",
    "            print(f\"Error extracting gene data with get_genetic_data(): {e}\")\n",
    "            is_gene_available = False\n",
    "    \n",
    "    # If gene data extraction failed, examine file content to diagnose\n",
    "    if not is_gene_available:\n",
    "        print(\"Examining file content to diagnose the issue:\")\n",
    "        try:\n",
    "            with gzip.open(matrix_file, 'rt') as file:\n",
    "                # Print lines around the marker if found\n",
    "                if marker_row is not None:\n",
    "                    for i, line in enumerate(file):\n",
    "                        if i >= marker_row - 2 and i <= marker_row + 10:\n",
    "                            print(f\"Line {i}: {line.strip()[:100]}...\")\n",
    "                        if i > marker_row + 10:\n",
    "                            break\n",
    "                else:\n",
    "                    # If marker not found, print first 10 lines\n",
    "                    for i, line in enumerate(file):\n",
    "                        if i < 10:\n",
    "                            print(f\"Line {i}: {line.strip()[:100]}...\")\n",
    "                        else:\n",
    "                            break\n",
    "        except Exception as e2:\n",
    "            print(f\"Error examining file: {e2}\")\n",
    "        \n",
    "except Exception as e:\n",
    "    print(f\"Error processing file: {e}\")\n",
    "    is_gene_available = False\n",
    "\n",
    "# Update validation information if gene data extraction failed\n",
    "if not is_gene_available:\n",
    "    print(\"Gene expression data could not be successfully extracted from this dataset.\")\n",
    "    # Update the validation record since gene data isn't available\n",
    "    is_trait_available = False  # We already determined trait data isn't available in step 2\n",
    "    validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path,\n",
    "                                 is_gene_available=is_gene_available, is_trait_available=is_trait_available)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "4f74afde",
   "metadata": {},
   "source": [
    "### Step 4: Gene Identifier Review"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "d87fae40",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T07:02:29.598037Z",
     "iopub.status.busy": "2025-03-25T07:02:29.597918Z",
     "iopub.status.idle": "2025-03-25T07:02:29.600218Z",
     "shell.execute_reply": "2025-03-25T07:02:29.599733Z"
    }
   },
   "outputs": [],
   "source": [
    "# Looking at the gene identifiers from the output above:\n",
    "# ['A2M', 'ACVR1C', 'ADAM12', 'ADGRE1', 'ADM', 'ADORA2A', 'AKT1', 'ALDOA', 'ALDOC', 'ANGPT1', 'ANGPT2', 'ANGPTL4', 'ANLN', 'APC', 'APH1B', 'API5', 'APLNR', 'APOE', 'APOL6', 'AQP9']\n",
    "# These appear to be standard human gene symbols rather than probe IDs or other identifiers\n",
    "# For example: A2M (Alpha-2-Macroglobulin), AKT1 (AKT Serine/Threonine Kinase 1), and APOE (Apolipoprotein E) are well-known gene symbols\n",
    "\n",
    "requires_gene_mapping = False\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "bcc08b17",
   "metadata": {},
   "source": [
    "### Step 5: Data Normalization and Linking"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "589e8b40",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T07:02:29.601696Z",
     "iopub.status.busy": "2025-03-25T07:02:29.601587Z",
     "iopub.status.idle": "2025-03-25T07:02:29.876240Z",
     "shell.execute_reply": "2025-03-25T07:02:29.875764Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Gene data shape before normalization: (754, 44)\n",
      "Gene data shape after normalization: (746, 44)\n",
      "Normalized gene data saved to ../../output/preprocess/Breast_Cancer/gene_data/GSE248830.csv\n",
      "Extracted clinical data shape: (3, 44)\n",
      "Preview of clinical data (first 5 samples):\n",
      "               GSM7920782  GSM7920783  GSM7920784  GSM7920785  GSM7920786\n",
      "Breast_Cancer         1.0         1.0         NaN         1.0         1.0\n",
      "Age                  49.0        44.0        41.0        40.0        48.0\n",
      "Gender                0.0         0.0         0.0         0.0         0.0\n",
      "Clinical data saved to ../../output/preprocess/Breast_Cancer/clinical_data/GSE248830.csv\n",
      "Gene data columns (first 5): ['GSM7920782', 'GSM7920783', 'GSM7920784', 'GSM7920785', 'GSM7920786']\n",
      "Clinical data columns (first 5): ['GSM7920782', 'GSM7920783', 'GSM7920784', 'GSM7920785', 'GSM7920786']\n",
      "Found 44 common samples between gene and clinical data\n",
      "Initial linked data shape: (44, 749)\n",
      "Preview of linked data (first 5 rows, first 5 columns):\n",
      "            Breast_Cancer   Age  Gender        A2M    ACVR1C\n",
      "GSM7920782            1.0  49.0     0.0  13.210102  5.128485\n",
      "GSM7920783            1.0  44.0     0.0  13.237969  5.336850\n",
      "GSM7920784            NaN  41.0     0.0  14.728878  5.611523\n",
      "GSM7920785            1.0  40.0     0.0  15.399663  5.041711\n",
      "GSM7920786            1.0  48.0     0.0  12.970464  6.342262\n",
      "Linked data shape after handling missing values: (41, 749)\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "For the feature 'Breast_Cancer', the least common label is '1.0' with 19 occurrences. This represents 46.34% of the dataset.\n",
      "The distribution of the feature 'Breast_Cancer' in this dataset is fine.\n",
      "\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Quartiles for 'Age':\n",
      "  25%: 48.0\n",
      "  50% (Median): 55.078947368421055\n",
      "  75%: 60.0\n",
      "Min: 37.0\n",
      "Max: 74.0\n",
      "The distribution of the feature 'Age' in this dataset is fine.\n",
      "\n",
      "For the feature 'Gender', the least common label is '1.0' with 12 occurrences. This represents 29.27% of the dataset.\n",
      "The distribution of the feature 'Gender' in this dataset is fine.\n",
      "\n",
      "Linked data saved to ../../output/preprocess/Breast_Cancer/GSE248830.csv\n"
     ]
    }
   ],
   "source": [
    "# 1. Normalize gene symbols in the gene expression data\n",
    "try:\n",
    "    # Make sure the directory exists\n",
    "    os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
    "    \n",
    "    # Use the gene_data variable from the previous step (don't try to load it from file)\n",
    "    print(f\"Gene data shape before normalization: {gene_data.shape}\")\n",
    "    \n",
    "    # Apply normalization to gene symbols\n",
    "    normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n",
    "    print(f\"Gene data shape after normalization: {normalized_gene_data.shape}\")\n",
    "    \n",
    "    # Save the normalized gene data\n",
    "    normalized_gene_data.to_csv(out_gene_data_file)\n",
    "    print(f\"Normalized gene data saved to {out_gene_data_file}\")\n",
    "    \n",
    "    # Use the normalized data for further processing\n",
    "    gene_data = normalized_gene_data\n",
    "    is_gene_available = True\n",
    "except Exception as e:\n",
    "    print(f\"Error normalizing gene data: {e}\")\n",
    "    is_gene_available = False\n",
    "\n",
    "# 2. Load clinical data - respecting the analysis from Step 2\n",
    "# From Step 2, we determined:\n",
    "# trait_row = None  # No Breast Cancer subtype data available\n",
    "# age_row = 2\n",
    "# gender_row = None\n",
    "is_trait_available = trait_row is not None\n",
    "\n",
    "# Skip clinical feature extraction when trait_row is None\n",
    "if is_trait_available:\n",
    "    try:\n",
    "        # Load the clinical data from file\n",
    "        soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "        background_info, clinical_data = get_background_and_clinical_data(matrix_file)\n",
    "        \n",
    "        # Extract clinical features\n",
    "        clinical_features = geo_select_clinical_features(\n",
    "            clinical_df=clinical_data,\n",
    "            trait=trait,\n",
    "            trait_row=trait_row,\n",
    "            convert_trait=convert_trait,\n",
    "            gender_row=gender_row,\n",
    "            convert_gender=convert_gender,\n",
    "            age_row=age_row,\n",
    "            convert_age=convert_age\n",
    "        )\n",
    "        \n",
    "        print(f\"Extracted clinical data shape: {clinical_features.shape}\")\n",
    "        print(\"Preview of clinical data (first 5 samples):\")\n",
    "        print(clinical_features.iloc[:, :5])\n",
    "        \n",
    "        # Save the properly extracted clinical data\n",
    "        os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "        clinical_features.to_csv(out_clinical_data_file)\n",
    "        print(f\"Clinical data saved to {out_clinical_data_file}\")\n",
    "    except Exception as e:\n",
    "        print(f\"Error extracting clinical data: {e}\")\n",
    "        is_trait_available = False\n",
    "else:\n",
    "    print(f\"No trait data ({trait}) available in this dataset based on previous analysis.\")\n",
    "\n",
    "# 3. Link clinical and genetic data if both are available\n",
    "if is_trait_available and is_gene_available:\n",
    "    try:\n",
    "        # Debug the column names to ensure they match\n",
    "        print(f\"Gene data columns (first 5): {gene_data.columns[:5].tolist()}\")\n",
    "        print(f\"Clinical data columns (first 5): {clinical_features.columns[:5].tolist()}\")\n",
    "        \n",
    "        # Check for common sample IDs\n",
    "        common_samples = set(gene_data.columns).intersection(clinical_features.columns)\n",
    "        print(f\"Found {len(common_samples)} common samples between gene and clinical data\")\n",
    "        \n",
    "        if len(common_samples) > 0:\n",
    "            # Link the clinical and genetic data\n",
    "            linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data)\n",
    "            print(f\"Initial linked data shape: {linked_data.shape}\")\n",
    "            \n",
    "            # Debug the trait values before handling missing values\n",
    "            print(\"Preview of linked data (first 5 rows, first 5 columns):\")\n",
    "            print(linked_data.iloc[:5, :5])\n",
    "            \n",
    "            # Handle missing values\n",
    "            linked_data = handle_missing_values(linked_data, trait)\n",
    "            print(f\"Linked data shape after handling missing values: {linked_data.shape}\")\n",
    "            \n",
    "            if linked_data.shape[0] > 0:\n",
    "                # Check for bias in trait and demographic features\n",
    "                is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)\n",
    "                \n",
    "                # Validate the data quality and save cohort info\n",
    "                note = \"Dataset contains gene expression data from triple negative breast cancer vs. luminal tumors, but no explicit breast cancer subtype labels in the sample characteristics.\"\n",
    "                is_usable = validate_and_save_cohort_info(\n",
    "                    is_final=True,\n",
    "                    cohort=cohort,\n",
    "                    info_path=json_path,\n",
    "                    is_gene_available=is_gene_available,\n",
    "                    is_trait_available=is_trait_available,\n",
    "                    is_biased=is_biased,\n",
    "                    df=linked_data,\n",
    "                    note=note\n",
    "                )\n",
    "                \n",
    "                # Save the linked data if it's usable\n",
    "                if is_usable:\n",
    "                    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
    "                    linked_data.to_csv(out_data_file)\n",
    "                    print(f\"Linked data saved to {out_data_file}\")\n",
    "                else:\n",
    "                    print(\"Data not usable for the trait study - not saving final linked data.\")\n",
    "            else:\n",
    "                print(\"After handling missing values, no samples remain.\")\n",
    "                validate_and_save_cohort_info(\n",
    "                    is_final=True,\n",
    "                    cohort=cohort,\n",
    "                    info_path=json_path,\n",
    "                    is_gene_available=is_gene_available,\n",
    "                    is_trait_available=is_trait_available,\n",
    "                    is_biased=True,\n",
    "                    df=pd.DataFrame(),\n",
    "                    note=\"No valid samples after handling missing values.\"\n",
    "                )\n",
    "        else:\n",
    "            print(\"No common samples found between gene expression and clinical data.\")\n",
    "            validate_and_save_cohort_info(\n",
    "                is_final=True,\n",
    "                cohort=cohort,\n",
    "                info_path=json_path,\n",
    "                is_gene_available=is_gene_available,\n",
    "                is_trait_available=is_trait_available,\n",
    "                is_biased=True,\n",
    "                df=pd.DataFrame(),\n",
    "                note=\"No common samples between gene expression and clinical data.\"\n",
    "            )\n",
    "    except Exception as e:\n",
    "        print(f\"Error linking or processing data: {e}\")\n",
    "        validate_and_save_cohort_info(\n",
    "            is_final=True,\n",
    "            cohort=cohort,\n",
    "            info_path=json_path,\n",
    "            is_gene_available=is_gene_available,\n",
    "            is_trait_available=is_trait_available,\n",
    "            is_biased=True,  # Assume biased if there's an error\n",
    "            df=pd.DataFrame(),  # Empty dataframe for metadata\n",
    "            note=f\"Error in data processing: {str(e)}\"\n",
    "        )\n",
    "else:\n",
    "    # Create an empty DataFrame for metadata purposes\n",
    "    empty_df = pd.DataFrame()\n",
    "    \n",
    "    # We can't proceed with linking if either trait or gene data is missing\n",
    "    print(\"Cannot proceed with data linking due to missing trait or gene data.\")\n",
    "    validate_and_save_cohort_info(\n",
    "        is_final=True,\n",
    "        cohort=cohort,\n",
    "        info_path=json_path,\n",
    "        is_gene_available=is_gene_available,\n",
    "        is_trait_available=is_trait_available,\n",
    "        is_biased=True,  # Data is unusable if we're missing components\n",
    "        df=empty_df,  # Empty dataframe for metadata\n",
    "        note=\"Dataset contains gene expression data from triple negative breast cancer vs. luminal tumors, but no explicit breast cancer subtype labels in the sample characteristics.\"\n",
    "    )"
   ]
  }
 ],
 "metadata": {
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.16"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}