File size: 31,891 Bytes
d1894e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "e1c4e17f",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T05:40:05.671523Z",
     "iopub.status.busy": "2025-03-25T05:40:05.671421Z",
     "iopub.status.idle": "2025-03-25T05:40:05.837960Z",
     "shell.execute_reply": "2025-03-25T05:40:05.837631Z"
    }
   },
   "outputs": [],
   "source": [
    "import sys\n",
    "import os\n",
    "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
    "\n",
    "# Path Configuration\n",
    "from tools.preprocess import *\n",
    "\n",
    "# Processing context\n",
    "trait = \"Height\"\n",
    "cohort = \"GSE101709\"\n",
    "\n",
    "# Input paths\n",
    "in_trait_dir = \"../../input/GEO/Height\"\n",
    "in_cohort_dir = \"../../input/GEO/Height/GSE101709\"\n",
    "\n",
    "# Output paths\n",
    "out_data_file = \"../../output/preprocess/Height/GSE101709.csv\"\n",
    "out_gene_data_file = \"../../output/preprocess/Height/gene_data/GSE101709.csv\"\n",
    "out_clinical_data_file = \"../../output/preprocess/Height/clinical_data/GSE101709.csv\"\n",
    "json_path = \"../../output/preprocess/Height/cohort_info.json\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "da535d59",
   "metadata": {},
   "source": [
    "### Step 1: Initial Data Loading"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "447b2db5",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T05:40:05.839480Z",
     "iopub.status.busy": "2025-03-25T05:40:05.839335Z",
     "iopub.status.idle": "2025-03-25T05:40:06.230956Z",
     "shell.execute_reply": "2025-03-25T05:40:06.230643Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Background Information:\n",
      "!Series_title\t\"Gene expression analysis of Influenza vaccine response in Young and Old - Year 4\"\n",
      "!Series_summary\t\"We profiled gene expression from a stratified cohort of subjects to define influenza vaccine response in Young and Old\"\n",
      "!Series_overall_design\t\"Differential gene expression by human PBMCs from Healthy Adults receiving Influenza Vaccination (Fluvirin, Novartis). Healthy adults (older >65, younger 21-30 years) were recruited at seasonal Influenza Vaccination clinics organized by Yale University Health Services during October to December of 2013 – 2014 seasons. With informed consent, healthy individuals were recruited as per a protocol approved by Human Investigations Committee of the Yale University School of Medicine. Each subject was evaluated by a screening questionnaire determining self-reported demographic information, height, weight, medications and comorbid conditions. Participants with acute illness two weeks prior to vaccination were excluded from study. Blood samples were collected into BD Vacutainer Sodium Heparin tube at four different time points, once prior to administration of vaccine and three time points after vaccination on days 2, 7 and 28. Peripheral Blood Mononuclear Cells (PBMC) were isolated from heparinized blood using Histopaque 1077 in gradient centrifugation. About 1.0x10^7 freshly isolated PBMC were lysed in Triso and immediately stored in -80C. Total RNA in aqueous phase of Trisol - Chloroform was isolated in an automated QiaCube instrument using miRNeasy according to manufacturer’s instructions. Integrity of RNA samples were assessed by Agilent 2100 BioAnalyser Samples were processed for cRNA generation using Illumina TotalPrep cRNA Amplification Kit and subsequently hybridized to Human HT12-V4.0 BeadChip at Yale Center for Genomic Analysis (YGCA).\"\n",
      "!Series_overall_design\t\"\"\n",
      "!Series_overall_design\t\"The current data set, together with GSE59654, GSE59635, GSE59743, and GSE101710, represents subsets of the same overall study\"\n",
      "Sample Characteristics Dictionary:\n",
      "{0: ['subject status: Healthy Adults receiving Influenza Vaccination'], 1: ['age group: Frail', 'age group: Older', 'age group: Young'], 2: ['blood draw date: after vaccination day 2', 'blood draw date: after vaccination day 7', 'blood draw date: after vaccination day 28', 'blood draw date: day 0; prior to administration of vaccine', 'blood draw date: after vaccination day 43'], 3: ['cell type: Peripheral Blood Mononuclear Cells (PBMC)'], 4: ['immport_expsamp_acc: ImmPort:ES1167274', 'immport_expsamp_acc: ImmPort:ES1167275', 'immport_expsamp_acc: ImmPort:ES1167276', 'immport_expsamp_acc: ImmPort:ES1167277', 'immport_expsamp_acc: ImmPort:ES1167278', 'immport_expsamp_acc: ImmPort:ES1167279', 'immport_expsamp_acc: ImmPort:ES1167280', 'immport_expsamp_acc: ImmPort:ES1167281', 'immport_expsamp_acc: ImmPort:ES1167282', 'immport_expsamp_acc: ImmPort:ES1167283', 'immport_expsamp_acc: ImmPort:ES1167284', 'immport_expsamp_acc: ImmPort:ES1167285', 'immport_expsamp_acc: ImmPort:ES1167286', 'immport_expsamp_acc: ImmPort:ES1167287', 'immport_expsamp_acc: ImmPort:ES1167288', 'immport_expsamp_acc: ImmPort:ES1167289', 'immport_expsamp_acc: ImmPort:ES1167290', 'immport_expsamp_acc: ImmPort:ES1167291', 'immport_expsamp_acc: ImmPort:ES1167292', 'immport_expsamp_acc: ImmPort:ES1167293', 'immport_expsamp_acc: ImmPort:ES1167294', 'immport_expsamp_acc: ImmPort:ES1167295', 'immport_expsamp_acc: ImmPort:ES1167296', 'immport_expsamp_acc: ImmPort:ES1167297', 'immport_expsamp_acc: ImmPort:ES1167298', 'immport_expsamp_acc: ImmPort:ES1167299', 'immport_expsamp_acc: ImmPort:ES1167300', 'immport_expsamp_acc: ImmPort:ES1167301', 'immport_expsamp_acc: ImmPort:ES1167302', 'immport_expsamp_acc: ImmPort:ES1167303']}\n"
     ]
    }
   ],
   "source": [
    "from tools.preprocess import *\n",
    "# 1. Identify the paths to the SOFT file and the matrix file\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. Read the matrix file to obtain background information and sample characteristics data\n",
    "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
    "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
    "background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
    "\n",
    "# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
    "sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
    "\n",
    "# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
    "print(\"Background Information:\")\n",
    "print(background_info)\n",
    "print(\"Sample Characteristics Dictionary:\")\n",
    "print(sample_characteristics_dict)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "f1de7f5c",
   "metadata": {},
   "source": [
    "### Step 2: Dataset Analysis and Clinical Feature Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "0a3c1212",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T05:40:06.232312Z",
     "iopub.status.busy": "2025-03-25T05:40:06.232192Z",
     "iopub.status.idle": "2025-03-25T05:40:06.251046Z",
     "shell.execute_reply": "2025-03-25T05:40:06.250758Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "A new JSON file was created at: ../../output/preprocess/Height/cohort_info.json\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "False"
      ]
     },
     "execution_count": 3,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# 1. Gene Expression Data Availability\n",
    "# From background information, we see it contains gene expression data from human PBMC samples\n",
    "# using \"Human HT12-V4.0 BeadChip\" - this is a gene expression microarray\n",
    "is_gene_available = True\n",
    "\n",
    "# 2. Variable Availability and Data Type Conversion\n",
    "# 2.1 Data Availability\n",
    "# For height (our trait), we can see in the background info that height data was collected\n",
    "# \"Each subject was evaluated by a screening questionnaire determining self-reported demographic information, height, weight...\"\n",
    "# However, we don't see height data in the sample characteristics dictionary\n",
    "trait_row = None  # Height data not available in the sample characteristics\n",
    "\n",
    "# For age, the sample characteristics dictionary shows age group data at index 1\n",
    "age_row = 1  # Age group data is available at index 1\n",
    "\n",
    "# Gender data is not explicitly available in the sample characteristics\n",
    "gender_row = None  # Gender data not available\n",
    "\n",
    "# 2.2 Data Type Conversion\n",
    "# For height (not available, but define a function anyway)\n",
    "def convert_trait(value):\n",
    "    if not value or pd.isna(value):\n",
    "        return None\n",
    "    \n",
    "    # Extract the value after colon if it exists\n",
    "    if ':' in value:\n",
    "        value = value.split(':', 1)[1].strip()\n",
    "    \n",
    "    try:\n",
    "        # Height would typically be a continuous value\n",
    "        return float(value)\n",
    "    except (ValueError, TypeError):\n",
    "        return None\n",
    "\n",
    "# For age (available as age group)\n",
    "def convert_age(value):\n",
    "    if not value or pd.isna(value):\n",
    "        return None\n",
    "    \n",
    "    # Extract the value after colon if it exists\n",
    "    if ':' in value:\n",
    "        value = value.split(':', 1)[1].strip()\n",
    "    \n",
    "    # Convert age group to binary (Young=0, Older/Frail=1)\n",
    "    if 'young' in value.lower():\n",
    "        return 0\n",
    "    elif 'older' in value.lower() or 'frail' in value.lower():\n",
    "        return 1\n",
    "    else:\n",
    "        return None\n",
    "\n",
    "# For gender (not available, but define a function anyway)\n",
    "def convert_gender(value):\n",
    "    if not value or pd.isna(value):\n",
    "        return None\n",
    "    \n",
    "    # Extract the value after colon if it exists\n",
    "    if ':' in value:\n",
    "        value = value.split(':', 1)[1].strip()\n",
    "    \n",
    "    # Convert gender to binary (female=0, male=1)\n",
    "    if 'female' in value.lower() or 'f' == value.lower():\n",
    "        return 0\n",
    "    elif 'male' in value.lower() or 'm' == value.lower():\n",
    "        return 1\n",
    "    else:\n",
    "        return None\n",
    "\n",
    "# 3. Save Metadata\n",
    "# The trait data is not available (trait_row is None)\n",
    "is_trait_available = trait_row is not None\n",
    "validate_and_save_cohort_info(\n",
    "    is_final=False,\n",
    "    cohort=cohort,\n",
    "    info_path=json_path,\n",
    "    is_gene_available=is_gene_available,\n",
    "    is_trait_available=is_trait_available\n",
    ")\n",
    "\n",
    "# 4. Clinical Feature Extraction - Skip as trait_row is None\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "1d360dfe",
   "metadata": {},
   "source": [
    "### Step 3: Gene Data Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "a781107c",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T05:40:06.252196Z",
     "iopub.status.busy": "2025-03-25T05:40:06.252086Z",
     "iopub.status.idle": "2025-03-25T05:40:06.912356Z",
     "shell.execute_reply": "2025-03-25T05:40:06.911956Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Extracting gene data from matrix file:\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Successfully extracted gene data with 46892 rows\n",
      "First 20 gene IDs:\n",
      "Index(['ILMN_1343291', 'ILMN_1343295', 'ILMN_1651199', 'ILMN_1651209',\n",
      "       'ILMN_1651210', 'ILMN_1651221', 'ILMN_1651228', 'ILMN_1651229',\n",
      "       'ILMN_1651230', 'ILMN_1651232', 'ILMN_1651235', 'ILMN_1651236',\n",
      "       'ILMN_1651237', 'ILMN_1651238', 'ILMN_1651249', 'ILMN_1651253',\n",
      "       'ILMN_1651254', 'ILMN_1651259', 'ILMN_1651260', 'ILMN_1651262'],\n",
      "      dtype='object', name='ID')\n",
      "\n",
      "Gene expression data available: True\n"
     ]
    }
   ],
   "source": [
    "# 1. Get the file paths for the SOFT file and matrix file\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. Extract gene expression data from the matrix file\n",
    "try:\n",
    "    print(\"Extracting gene data from matrix file:\")\n",
    "    gene_data = get_genetic_data(matrix_file)\n",
    "    if gene_data.empty:\n",
    "        print(\"Extracted gene expression data is empty\")\n",
    "        is_gene_available = False\n",
    "    else:\n",
    "        print(f\"Successfully extracted gene data with {len(gene_data.index)} rows\")\n",
    "        print(\"First 20 gene IDs:\")\n",
    "        print(gene_data.index[:20])\n",
    "        is_gene_available = True\n",
    "except Exception as e:\n",
    "    print(f\"Error extracting gene data: {e}\")\n",
    "    print(\"This dataset appears to have an empty or malformed gene expression matrix\")\n",
    "    is_gene_available = False\n",
    "\n",
    "print(f\"\\nGene expression data available: {is_gene_available}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "1e48f28c",
   "metadata": {},
   "source": [
    "### Step 4: Gene Identifier Review"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "c27d7239",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T05:40:06.913760Z",
     "iopub.status.busy": "2025-03-25T05:40:06.913643Z",
     "iopub.status.idle": "2025-03-25T05:40:06.915557Z",
     "shell.execute_reply": "2025-03-25T05:40:06.915248Z"
    }
   },
   "outputs": [],
   "source": [
    "# Based on the gene identifiers observed, these are Illumina microarray probe IDs (ILMN_) \n",
    "# rather than standard human gene symbols. They need to be mapped to gene symbols for proper analysis.\n",
    "\n",
    "requires_gene_mapping = True\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "71709be7",
   "metadata": {},
   "source": [
    "### Step 5: Gene Annotation"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "f07d43c6",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T05:40:06.916803Z",
     "iopub.status.busy": "2025-03-25T05:40:06.916694Z",
     "iopub.status.idle": "2025-03-25T05:40:07.880629Z",
     "shell.execute_reply": "2025-03-25T05:40:07.880278Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Examining SOFT file structure:\n",
      "Line 0: ^DATABASE = GeoMiame\n",
      "Line 1: !Database_name = Gene Expression Omnibus (GEO)\n",
      "Line 2: !Database_institute = NCBI NLM NIH\n",
      "Line 3: !Database_web_link = http://www.ncbi.nlm.nih.gov/geo\n",
      "Line 4: !Database_email = [email protected]\n",
      "Line 5: ^SERIES = GSE101709\n",
      "Line 6: !Series_title = Gene expression analysis of Influenza vaccine response in Young and Old - Year 4\n",
      "Line 7: !Series_geo_accession = GSE101709\n",
      "Line 8: !Series_status = Public on Jan 08 2020\n",
      "Line 9: !Series_submission_date = Jul 20 2017\n",
      "Line 10: !Series_last_update_date = Jul 25 2021\n",
      "Line 11: !Series_pubmed_id = 32060136\n",
      "Line 12: !Series_summary = We profiled gene expression from a stratified cohort of subjects to define influenza vaccine response in Young and Old\n",
      "Line 13: !Series_overall_design = Differential gene expression by human PBMCs from Healthy Adults receiving Influenza Vaccination (Fluvirin, Novartis). Healthy adults (older >65, younger 21-30 years) were recruited at seasonal Influenza Vaccination clinics organized by Yale University Health Services during October to December of 2013 – 2014 seasons. With informed consent, healthy individuals were recruited as per a protocol approved by Human Investigations Committee of the Yale University School of Medicine. Each subject was evaluated by a screening questionnaire determining self-reported demographic information, height, weight, medications and comorbid conditions. Participants with acute illness two weeks prior to vaccination were excluded from study. Blood samples were collected into BD Vacutainer Sodium Heparin tube at four different time points, once prior to administration of vaccine and three time points after vaccination on days 2, 7 and 28. Peripheral Blood Mononuclear Cells (PBMC) were isolated from heparinized blood using Histopaque 1077 in gradient centrifugation. About 1.0x10^7 freshly isolated PBMC were lysed in Triso and immediately stored in -80C. Total RNA in aqueous phase of Trisol - Chloroform was isolated in an automated QiaCube instrument using miRNeasy according to manufacturer’s instructions. Integrity of RNA samples were assessed by Agilent 2100 BioAnalyser Samples were processed for cRNA generation using Illumina TotalPrep cRNA Amplification Kit and subsequently hybridized to Human HT12-V4.0 BeadChip at Yale Center for Genomic Analysis (YGCA).\n",
      "Line 14: !Series_overall_design =\n",
      "Line 15: !Series_overall_design = The current data set, together with GSE59654, GSE59635, GSE59743, and GSE101710, represents subsets of the same overall study\n",
      "Line 16: !Series_type = Expression profiling by array\n",
      "Line 17: !Series_contributor = Albert,C,Shaw\n",
      "Line 18: !Series_contributor = Subhasis,,Mohanty\n",
      "Line 19: !Series_contributor = Hailong,,Meng\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "Gene annotation preview:\n",
      "{'ID': ['ILMN_1343048', 'ILMN_1343049', 'ILMN_1343050', 'ILMN_1343052', 'ILMN_1343059'], 'Species': [nan, nan, nan, nan, nan], 'Source': [nan, nan, nan, nan, nan], 'Search_Key': [nan, nan, nan, nan, nan], 'Transcript': [nan, nan, nan, nan, nan], 'ILMN_Gene': [nan, nan, nan, nan, nan], 'Source_Reference_ID': [nan, nan, nan, nan, nan], 'RefSeq_ID': [nan, nan, nan, nan, nan], 'Unigene_ID': [nan, nan, nan, nan, nan], 'Entrez_Gene_ID': [nan, nan, nan, nan, nan], 'GI': [nan, nan, nan, nan, nan], 'Accession': [nan, nan, nan, nan, nan], 'Symbol': ['phage_lambda_genome', 'phage_lambda_genome', 'phage_lambda_genome:low', 'phage_lambda_genome:low', 'thrB'], 'Protein_Product': [nan, nan, nan, nan, 'thrB'], 'Probe_Id': [nan, nan, nan, nan, nan], 'Array_Address_Id': [5090180, 6510136, 7560739, 1450438, 1240647], 'Probe_Type': [nan, nan, nan, nan, nan], 'Probe_Start': [nan, nan, nan, nan, nan], 'SEQUENCE': ['GAATAAAGAACAATCTGCTGATGATCCCTCCGTGGATCTGATTCGTGTAA', 'CCATGTGATACGAGGGCGCGTAGTTTGCATTATCGTTTTTATCGTTTCAA', 'CCGACAGATGTATGTAAGGCCAACGTGCTCAAATCTTCATACAGAAAGAT', 'TCTGTCACTGTCAGGAAAGTGGTAAAACTGCAACTCAATTACTGCAATGC', 'CTTGTGCCTGAGCTGTCAAAAGTAGAGCACGTCGCCGAGATGAAGGGCGC'], 'Chromosome': [nan, nan, nan, nan, nan], 'Probe_Chr_Orientation': [nan, nan, nan, nan, nan], 'Probe_Coordinates': [nan, nan, nan, nan, nan], 'Cytoband': [nan, nan, nan, nan, nan], 'Definition': [nan, nan, nan, nan, nan], 'Ontology_Component': [nan, nan, nan, nan, nan], 'Ontology_Process': [nan, nan, nan, nan, nan], 'Ontology_Function': [nan, nan, nan, nan, nan], 'Synonyms': [nan, nan, nan, nan, nan], 'Obsolete_Probe_Id': [nan, nan, nan, nan, nan], 'GB_ACC': [nan, nan, nan, nan, nan]}\n"
     ]
    }
   ],
   "source": [
    "# 1. Let's first examine the structure of the SOFT file before trying to parse it\n",
    "import gzip\n",
    "\n",
    "# Look at the first few lines of the SOFT file to understand its structure\n",
    "print(\"Examining SOFT file structure:\")\n",
    "try:\n",
    "    with gzip.open(soft_file, 'rt') as file:\n",
    "        # Read first 20 lines to understand the file structure\n",
    "        for i, line in enumerate(file):\n",
    "            if i < 20:\n",
    "                print(f\"Line {i}: {line.strip()}\")\n",
    "            else:\n",
    "                break\n",
    "except Exception as e:\n",
    "    print(f\"Error reading SOFT file: {e}\")\n",
    "\n",
    "# 2. Now let's try a more robust approach to extract the gene annotation\n",
    "# Instead of using the library function which failed, we'll implement a custom approach\n",
    "try:\n",
    "    # First, look for the platform section which contains gene annotation\n",
    "    platform_data = []\n",
    "    with gzip.open(soft_file, 'rt') as file:\n",
    "        in_platform_section = False\n",
    "        for line in file:\n",
    "            if line.startswith('^PLATFORM'):\n",
    "                in_platform_section = True\n",
    "                continue\n",
    "            if in_platform_section and line.startswith('!platform_table_begin'):\n",
    "                # Next line should be the header\n",
    "                header = next(file).strip()\n",
    "                platform_data.append(header)\n",
    "                # Read until the end of the platform table\n",
    "                for table_line in file:\n",
    "                    if table_line.startswith('!platform_table_end'):\n",
    "                        break\n",
    "                    platform_data.append(table_line.strip())\n",
    "                break\n",
    "    \n",
    "    # If we found platform data, convert it to a DataFrame\n",
    "    if platform_data:\n",
    "        import pandas as pd\n",
    "        import io\n",
    "        platform_text = '\\n'.join(platform_data)\n",
    "        gene_annotation = pd.read_csv(io.StringIO(platform_text), delimiter='\\t', \n",
    "                                      low_memory=False, on_bad_lines='skip')\n",
    "        print(\"\\nGene annotation preview:\")\n",
    "        print(preview_df(gene_annotation))\n",
    "    else:\n",
    "        print(\"Could not find platform table in SOFT file\")\n",
    "        \n",
    "        # Try an alternative approach - extract mapping from other sections\n",
    "        with gzip.open(soft_file, 'rt') as file:\n",
    "            for line in file:\n",
    "                if 'ANNOTATION information' in line or 'annotation information' in line:\n",
    "                    print(f\"Found annotation information: {line.strip()}\")\n",
    "                if line.startswith('!Platform_title') or line.startswith('!platform_title'):\n",
    "                    print(f\"Platform title: {line.strip()}\")\n",
    "            \n",
    "except Exception as e:\n",
    "    print(f\"Error processing gene annotation: {e}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "3c02687f",
   "metadata": {},
   "source": [
    "### Step 6: Gene Identifier Mapping"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "78300917",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T05:40:07.882045Z",
     "iopub.status.busy": "2025-03-25T05:40:07.881913Z",
     "iopub.status.idle": "2025-03-25T05:40:08.072767Z",
     "shell.execute_reply": "2025-03-25T05:40:08.072398Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Created gene mapping with 44837 entries\n",
      "Gene mapping preview:\n",
      "             ID                     Gene\n",
      "0  ILMN_1343048      phage_lambda_genome\n",
      "1  ILMN_1343049      phage_lambda_genome\n",
      "2  ILMN_1343050  phage_lambda_genome:low\n",
      "3  ILMN_1343052  phage_lambda_genome:low\n",
      "4  ILMN_1343059                     thrB\n",
      "Converted probe-level data to gene-level expression data with 21344 genes\n",
      "First few genes:\n",
      "Index(['A1BG', 'A1CF', 'A26C3', 'A2BP1', 'A2LD1', 'A2M', 'A2ML1', 'A3GALT2',\n",
      "       'A4GALT', 'A4GNT'],\n",
      "      dtype='object', name='Gene')\n",
      "Successfully mapped expression data to 21344 genes\n"
     ]
    }
   ],
   "source": [
    "# 1. Determine which columns contain the probe IDs and gene symbols\n",
    "# From the previous output, we can see:\n",
    "# - 'ID' column contains the probe IDs (ILMN_*) that match our gene expression data\n",
    "# - 'Symbol' column contains the gene symbols we need to map to\n",
    "\n",
    "# 2. Extract the gene mapping dataframe from the gene annotation\n",
    "probe_id_col = 'ID'\n",
    "gene_symbol_col = 'Symbol'\n",
    "\n",
    "# Create the mapping dataframe\n",
    "gene_mapping = get_gene_mapping(gene_annotation, probe_id_col, gene_symbol_col)\n",
    "print(f\"Created gene mapping with {len(gene_mapping)} entries\")\n",
    "print(\"Gene mapping preview:\")\n",
    "print(gene_mapping.head())\n",
    "\n",
    "# 3. Apply the gene mapping to convert probe-level measurements to gene-level expression\n",
    "gene_data = apply_gene_mapping(gene_data, gene_mapping)\n",
    "print(f\"Converted probe-level data to gene-level expression data with {len(gene_data)} genes\")\n",
    "print(\"First few genes:\")\n",
    "print(gene_data.index[:10])\n",
    "\n",
    "# Check if we have successfully extracted genes\n",
    "if gene_data.empty:\n",
    "    print(\"Warning: Mapped gene expression data is empty\")\n",
    "    is_gene_available = False\n",
    "else:\n",
    "    print(f\"Successfully mapped expression data to {len(gene_data.index)} genes\")\n",
    "    is_gene_available = True\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "90977699",
   "metadata": {},
   "source": [
    "### Step 7: Data Normalization and Linking"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "4c6428d8",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T05:40:08.074052Z",
     "iopub.status.busy": "2025-03-25T05:40:08.073931Z",
     "iopub.status.idle": "2025-03-25T05:40:09.824683Z",
     "shell.execute_reply": "2025-03-25T05:40:09.824296Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Gene data before normalization: (21344, 98)\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Gene data after normalization: (20158, 98)\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Gene expression data saved to ../../output/preprocess/Height/gene_data/GSE101709.csv\n",
      "Added Age data to clinical dataframe\n",
      "Clinical data saved to ../../output/preprocess/Height/clinical_data/GSE101709.csv\n",
      "Linked data shape: (98, 20160)\n",
      "Dataset usability: False\n",
      "Dataset does not contain Height data and cannot be used for association studies.\n"
     ]
    }
   ],
   "source": [
    "# 1. Normalize gene symbols in the gene expression data\n",
    "import numpy as np\n",
    "import os\n",
    "\n",
    "print(f\"Gene data before normalization: {gene_data.shape}\")\n",
    "\n",
    "try:\n",
    "    # Try to normalize gene symbols using the NCBI Gene database\n",
    "    normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n",
    "    print(f\"Gene data after normalization: {normalized_gene_data.shape}\")\n",
    "    \n",
    "    # If normalization resulted in empty dataframe, use the original gene data\n",
    "    if normalized_gene_data.empty:\n",
    "        print(\"Warning: Normalization resulted in empty gene data. Using original gene data instead.\")\n",
    "        normalized_gene_data = gene_data\n",
    "        \n",
    "except Exception as e:\n",
    "    print(f\"Error during gene symbol normalization: {e}\")\n",
    "    print(\"Using original gene data instead.\")\n",
    "    normalized_gene_data = gene_data\n",
    "\n",
    "# Save gene expression data\n",
    "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
    "normalized_gene_data.to_csv(out_gene_data_file)\n",
    "print(f\"Gene expression data saved to {out_gene_data_file}\")\n",
    "\n",
    "# 2. Create a minimal clinical dataframe since we don't have trait data\n",
    "sample_ids = gene_data.columns\n",
    "minimal_clinical_df = pd.DataFrame(index=sample_ids)\n",
    "minimal_clinical_df[trait] = np.nan  # Add the trait column with NaN values\n",
    "\n",
    "# If we have age data from Step 2, add that column\n",
    "if age_row is not None:\n",
    "    try:\n",
    "        minimal_clinical_df['Age'] = get_feature_data(clinical_data, age_row, 'Age', convert_age).iloc[0]\n",
    "        print(\"Added Age data to clinical dataframe\")\n",
    "    except Exception as e:\n",
    "        print(f\"Error adding age data: {e}\")\n",
    "\n",
    "# If we have gender data from Step 2, add that column\n",
    "if gender_row is not None:\n",
    "    try:\n",
    "        minimal_clinical_df['Gender'] = get_feature_data(clinical_data, gender_row, 'Gender', convert_gender).iloc[0]\n",
    "        print(\"Added Gender data to clinical dataframe\")\n",
    "    except Exception as e:\n",
    "        print(f\"Error adding gender data: {e}\")\n",
    "\n",
    "# Save clinical data\n",
    "os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "minimal_clinical_df.to_csv(out_clinical_data_file)\n",
    "print(f\"Clinical data saved to {out_clinical_data_file}\")\n",
    "\n",
    "# Link clinical and genetic data\n",
    "try:\n",
    "    linked_data = pd.concat([minimal_clinical_df, normalized_gene_data.T], axis=1)\n",
    "    linked_data.index.name = 'Sample'\n",
    "    print(f\"Linked data shape: {linked_data.shape}\")\n",
    "except Exception as e:\n",
    "    print(f\"Error linking clinical and genetic data: {e}\")\n",
    "    # Create a minimal dataframe with just the trait for validation\n",
    "    linked_data = minimal_clinical_df\n",
    "    print(f\"Using only clinical data with shape: {linked_data.shape}\")\n",
    "\n",
    "# Since trait_row was None in Step 2, we know Height data is not available\n",
    "is_trait_available = False  \n",
    "\n",
    "# Add a detailed note about the dataset limitations\n",
    "note = \"Dataset contains gene expression data but no Height measurements. The dataset includes age group information (Young vs Older/Frail) but lacks the specific trait data needed for Height association studies.\"\n",
    "\n",
    "# For datasets without trait data, we set is_biased to False\n",
    "is_biased = False\n",
    "\n",
    "# Final validation and data quality assessment\n",
    "is_usable = validate_and_save_cohort_info(\n",
    "    is_final=True, \n",
    "    cohort=cohort, \n",
    "    info_path=json_path, \n",
    "    is_gene_available=is_gene_available, \n",
    "    is_trait_available=is_trait_available, \n",
    "    is_biased=is_biased,\n",
    "    df=linked_data,\n",
    "    note=note\n",
    ")\n",
    "\n",
    "# Only save the linked data if it's usable for our study\n",
    "print(f\"Dataset usability: {is_usable}\")\n",
    "if is_usable:\n",
    "    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
    "    linked_data.to_csv(out_data_file)\n",
    "    print(f\"Linked data saved to {out_data_file}\")\n",
    "else:\n",
    "    print(\"Dataset does not contain Height data and cannot be used for association studies.\")"
   ]
  }
 ],
 "metadata": {
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.16"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}