File size: 33,924 Bytes
7ae1978 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "71ac4024",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T05:40:10.693645Z",
"iopub.status.busy": "2025-03-25T05:40:10.693407Z",
"iopub.status.idle": "2025-03-25T05:40:10.861671Z",
"shell.execute_reply": "2025-03-25T05:40:10.861278Z"
}
},
"outputs": [],
"source": [
"import sys\n",
"import os\n",
"sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
"\n",
"# Path Configuration\n",
"from tools.preprocess import *\n",
"\n",
"# Processing context\n",
"trait = \"Height\"\n",
"cohort = \"GSE101710\"\n",
"\n",
"# Input paths\n",
"in_trait_dir = \"../../input/GEO/Height\"\n",
"in_cohort_dir = \"../../input/GEO/Height/GSE101710\"\n",
"\n",
"# Output paths\n",
"out_data_file = \"../../output/preprocess/Height/GSE101710.csv\"\n",
"out_gene_data_file = \"../../output/preprocess/Height/gene_data/GSE101710.csv\"\n",
"out_clinical_data_file = \"../../output/preprocess/Height/clinical_data/GSE101710.csv\"\n",
"json_path = \"../../output/preprocess/Height/cohort_info.json\"\n"
]
},
{
"cell_type": "markdown",
"id": "d9ea1f6f",
"metadata": {},
"source": [
"### Step 1: Initial Data Loading"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "a33ad8ae",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T05:40:10.863175Z",
"iopub.status.busy": "2025-03-25T05:40:10.863017Z",
"iopub.status.idle": "2025-03-25T05:40:11.189176Z",
"shell.execute_reply": "2025-03-25T05:40:11.188828Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Background Information:\n",
"!Series_title\t\"Gene expression analysis of Influenza vaccine response in Young and Old - Year 5\"\n",
"!Series_summary\t\"We profiled gene expression from a stratified cohort of subjects to define influenza vaccine response in Young and Old\"\n",
"!Series_overall_design\t\"Differential gene expression by human PBMCs from Healthy Adults receiving Influenza Vaccination (Fluvirin, Novartis). Healthy adults (older >65, younger 21-30 years) were recruited at seasonal Influenza Vaccination clinics organized by Yale University Health Services during October to December of 2014 – 2015 seasons. With informed consent, healthy individuals were recruited as per a protocol approved by Human Investigations Committee of the Yale University School of Medicine. Each subject was evaluated by a screening questionnaire determining self-reported demographic information, height, weight, medications and comorbid conditions. Participants with acute illness two weeks prior to vaccination were excluded from study. Blood samples were collected into BD Vacutainer Sodium Heparin tube at four different time points, once prior to administration of vaccine and three time points after vaccination on days 2, 7 and 28. Peripheral Blood Mononuclear Cells (PBMC) were isolated from heparinized blood using Histopaque 1077 in gradient centrifugation. About 1.0x10^7 freshly isolated PBMC were lysed in Triso and immediately stored in -800C. Total RNA in aqueous phase of Trisol - Chloroform was isolated in an automated QiaCube instrument using miRNeasy according to manufacturer’s instructions. Integrity of RNA samples were assessed by Agilent 2100 BioAnalyser Samples were processed for cRNA generation using Illumina TotalPrep cRNA Amplification Kit and subsequently hybridized to Human HT12-V4.0 BeadChip at Yale Center for Genomic Analysis (YGCA).\"\n",
"!Series_overall_design\t\"\"\n",
"!Series_overall_design\t\"The current data set, together with GSE59654, GSE59635, GSE59743, and GSE101709, represents subsets of the same overall study\"\n",
"Sample Characteristics Dictionary:\n",
"{0: ['subject status: Healthy Adults receiving Influenza Vaccination'], 1: ['age group: Older', 'age group: Frail', 'age group: Young'], 2: ['blood draw date: day 0; prior to administration of vaccine', 'blood draw date: after vaccination day 2', 'blood draw date: after vaccination day 7', 'blood draw date: after vaccination day 28', 'blood draw date: after vaccination day 25', 'blood draw date: after vaccination day 37', 'blood draw date: after vaccination day 41'], 3: ['cell type: Peripheral Blood Mononuclear Cells (PBMC)'], 4: ['immport_expsamp_acc: ImmPort:ES1167372', 'immport_expsamp_acc: ImmPort:ES1167373', 'immport_expsamp_acc: ImmPort:ES1167374', 'immport_expsamp_acc: ImmPort:ES1167375', 'immport_expsamp_acc: ImmPort:ES1167376', 'immport_expsamp_acc: ImmPort:ES1167377', 'immport_expsamp_acc: ImmPort:ES1167378', 'immport_expsamp_acc: ImmPort:ES1167379', 'immport_expsamp_acc: ImmPort:ES1167380', 'immport_expsamp_acc: ImmPort:ES1167381', 'immport_expsamp_acc: ImmPort:ES1167382', 'immport_expsamp_acc: ImmPort:ES1167383', 'immport_expsamp_acc: ImmPort:ES1167384', 'immport_expsamp_acc: ImmPort:ES1167385', 'immport_expsamp_acc: ImmPort:ES1167386', 'immport_expsamp_acc: ImmPort:ES1167387', 'immport_expsamp_acc: ImmPort:ES1167388', 'immport_expsamp_acc: ImmPort:ES1167389', 'immport_expsamp_acc: ImmPort:ES1167390', 'immport_expsamp_acc: ImmPort:ES1167391', 'immport_expsamp_acc: ImmPort:ES1167392', 'immport_expsamp_acc: ImmPort:ES1167393', 'immport_expsamp_acc: ImmPort:ES1167394', 'immport_expsamp_acc: ImmPort:ES1167395', 'immport_expsamp_acc: ImmPort:ES1167396', 'immport_expsamp_acc: ImmPort:ES1167397', 'immport_expsamp_acc: ImmPort:ES1167398', 'immport_expsamp_acc: ImmPort:ES1167399', 'immport_expsamp_acc: ImmPort:ES1167400', 'immport_expsamp_acc: ImmPort:ES1167401']}\n"
]
}
],
"source": [
"from tools.preprocess import *\n",
"# 1. Identify the paths to the SOFT file and the matrix file\n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"\n",
"# 2. Read the matrix file to obtain background information and sample characteristics data\n",
"background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
"clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
"background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
"\n",
"# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
"sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
"\n",
"# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
"print(\"Background Information:\")\n",
"print(background_info)\n",
"print(\"Sample Characteristics Dictionary:\")\n",
"print(sample_characteristics_dict)\n"
]
},
{
"cell_type": "markdown",
"id": "2a85bcd4",
"metadata": {},
"source": [
"### Step 2: Dataset Analysis and Clinical Feature Extraction"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "39c28fc9",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T05:40:11.190462Z",
"iopub.status.busy": "2025-03-25T05:40:11.190342Z",
"iopub.status.idle": "2025-03-25T05:40:11.198270Z",
"shell.execute_reply": "2025-03-25T05:40:11.197935Z"
}
},
"outputs": [
{
"data": {
"text/plain": [
"False"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import pandas as pd\n",
"import os\n",
"import re\n",
"from typing import Optional, Any, Dict, Callable\n",
"\n",
"# 1. Gene Expression Data Availability\n",
"# Based on background information, this dataset contains gene expression data from Illumina HT12-V4.0 BeadChip\n",
"is_gene_available = True\n",
"\n",
"# 2. Variable Availability and Data Type Conversion\n",
"# 2.1 Data Availability\n",
"\n",
"# For height (our trait): The background info mentions height was collected in screening questionnaire\n",
"# But looking at the sample characteristics, there's no direct height data\n",
"trait_row = None # Height data is not available in the sample characteristics\n",
"\n",
"# For age: Age group is available in row 1 \n",
"age_row = 1 # Contains \"age group: Older\", \"age group: Frail\", \"age group: Young\"\n",
"\n",
"# For gender: No gender information in the sample characteristics\n",
"gender_row = None # Gender data is not available\n",
"\n",
"# 2.2 Data Type Conversion\n",
"\n",
"# Define conversion functions for each variable\n",
"def convert_trait(value: str) -> Optional[float]:\n",
" \"\"\"Convert height data to float (continuous). Not used in this dataset.\"\"\"\n",
" if value is None or pd.isna(value):\n",
" return None\n",
" \n",
" # Extract value after colon if present\n",
" if ':' in value:\n",
" value = value.split(':', 1)[1].strip()\n",
" \n",
" try:\n",
" return float(value)\n",
" except (ValueError, TypeError):\n",
" return None\n",
"\n",
"def convert_age(value: str) -> Optional[int]:\n",
" \"\"\"Convert age group to binary (0 for Young, 1 for Older/Frail).\"\"\"\n",
" if value is None or pd.isna(value):\n",
" return None\n",
" \n",
" # Extract value after colon if present\n",
" if ':' in value:\n",
" value = value.split(':', 1)[1].strip()\n",
" \n",
" value = value.lower()\n",
" if 'young' in value:\n",
" return 0\n",
" elif 'older' in value or 'frail' in value:\n",
" return 1\n",
" else:\n",
" return None\n",
"\n",
"def convert_gender(value: str) -> Optional[int]:\n",
" \"\"\"Convert gender to binary (0 for female, 1 for male). Not used in this dataset.\"\"\"\n",
" if value is None or pd.isna(value):\n",
" return None\n",
" \n",
" # Extract value after colon if present\n",
" if ':' in value:\n",
" value = value.split(':', 1)[1].strip()\n",
" \n",
" value = value.lower()\n",
" if 'female' in value or 'f' == value:\n",
" return 0\n",
" elif 'male' in value or 'm' == value:\n",
" return 1\n",
" else:\n",
" return None\n",
"\n",
"# 3. Save Metadata\n",
"# is_trait_available is False since trait_row is None\n",
"is_trait_available = trait_row is not None\n",
"validate_and_save_cohort_info(\n",
" is_final=False,\n",
" cohort=cohort,\n",
" info_path=json_path,\n",
" is_gene_available=is_gene_available,\n",
" is_trait_available=is_trait_available\n",
")\n",
"\n",
"# 4. Clinical Feature Extraction\n",
"# We skip this step since trait_row is None (no height data available)\n",
"# If we had trait data, we would execute:\n",
"# if trait_row is not None:\n",
"# # Assuming clinical_data is loaded from a previous step\n",
"# clinical_data = pd.read_csv(os.path.join(in_cohort_dir, \"clinical_data.csv\"))\n",
"# selected_clinical_df = geo_select_clinical_features(\n",
"# clinical_df=clinical_data,\n",
"# trait=trait,\n",
"# trait_row=trait_row,\n",
"# convert_trait=convert_trait,\n",
"# age_row=age_row,\n",
"# convert_age=convert_age if age_row is not None else None,\n",
"# gender_row=gender_row,\n",
"# convert_gender=convert_gender if gender_row is not None else None\n",
"# )\n",
"# \n",
"# # Preview the dataframe\n",
"# preview = preview_df(selected_clinical_df)\n",
"# print(preview)\n",
"# \n",
"# # Save the clinical data\n",
"# os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
"# selected_clinical_df.to_csv(out_clinical_data_file, index=False)\n"
]
},
{
"cell_type": "markdown",
"id": "7b7182cb",
"metadata": {},
"source": [
"### Step 3: Gene Data Extraction"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "1d75ee47",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T05:40:11.199389Z",
"iopub.status.busy": "2025-03-25T05:40:11.199277Z",
"iopub.status.idle": "2025-03-25T05:40:11.715881Z",
"shell.execute_reply": "2025-03-25T05:40:11.715495Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Extracting gene data from matrix file:\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Successfully extracted gene data with 46892 rows\n",
"First 20 gene IDs:\n",
"Index(['ILMN_1343291', 'ILMN_1343295', 'ILMN_1651199', 'ILMN_1651209',\n",
" 'ILMN_1651210', 'ILMN_1651221', 'ILMN_1651228', 'ILMN_1651229',\n",
" 'ILMN_1651230', 'ILMN_1651232', 'ILMN_1651235', 'ILMN_1651236',\n",
" 'ILMN_1651237', 'ILMN_1651238', 'ILMN_1651249', 'ILMN_1651253',\n",
" 'ILMN_1651254', 'ILMN_1651259', 'ILMN_1651260', 'ILMN_1651262'],\n",
" dtype='object', name='ID')\n",
"\n",
"Gene expression data available: True\n"
]
}
],
"source": [
"# 1. Get the file paths for the SOFT file and matrix file\n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"\n",
"# 2. Extract gene expression data from the matrix file\n",
"try:\n",
" print(\"Extracting gene data from matrix file:\")\n",
" gene_data = get_genetic_data(matrix_file)\n",
" if gene_data.empty:\n",
" print(\"Extracted gene expression data is empty\")\n",
" is_gene_available = False\n",
" else:\n",
" print(f\"Successfully extracted gene data with {len(gene_data.index)} rows\")\n",
" print(\"First 20 gene IDs:\")\n",
" print(gene_data.index[:20])\n",
" is_gene_available = True\n",
"except Exception as e:\n",
" print(f\"Error extracting gene data: {e}\")\n",
" print(\"This dataset appears to have an empty or malformed gene expression matrix\")\n",
" is_gene_available = False\n",
"\n",
"print(f\"\\nGene expression data available: {is_gene_available}\")\n"
]
},
{
"cell_type": "markdown",
"id": "430a6a09",
"metadata": {},
"source": [
"### Step 4: Gene Identifier Review"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "8f0878d5",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T05:40:11.717182Z",
"iopub.status.busy": "2025-03-25T05:40:11.717051Z",
"iopub.status.idle": "2025-03-25T05:40:11.719025Z",
"shell.execute_reply": "2025-03-25T05:40:11.718693Z"
}
},
"outputs": [],
"source": [
"# These are Illumina microarray probe identifiers (ILMN_*), not human gene symbols.\n",
"# They need to be mapped to official gene symbols for biological interpretation.\n",
"\n",
"requires_gene_mapping = True\n"
]
},
{
"cell_type": "markdown",
"id": "7e8b2636",
"metadata": {},
"source": [
"### Step 5: Gene Annotation"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "fb407d5b",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T05:40:11.720203Z",
"iopub.status.busy": "2025-03-25T05:40:11.720089Z",
"iopub.status.idle": "2025-03-25T05:40:12.690269Z",
"shell.execute_reply": "2025-03-25T05:40:12.689866Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Examining SOFT file structure:\n",
"Line 0: ^DATABASE = GeoMiame\n",
"Line 1: !Database_name = Gene Expression Omnibus (GEO)\n",
"Line 2: !Database_institute = NCBI NLM NIH\n",
"Line 3: !Database_web_link = http://www.ncbi.nlm.nih.gov/geo\n",
"Line 4: !Database_email = [email protected]\n",
"Line 5: ^SERIES = GSE101710\n",
"Line 6: !Series_title = Gene expression analysis of Influenza vaccine response in Young and Old - Year 5\n",
"Line 7: !Series_geo_accession = GSE101710\n",
"Line 8: !Series_status = Public on May 26 2019\n",
"Line 9: !Series_submission_date = Jul 20 2017\n",
"Line 10: !Series_last_update_date = Jul 25 2021\n",
"Line 11: !Series_pubmed_id = 30239628\n",
"Line 12: !Series_pubmed_id = 32060136\n",
"Line 13: !Series_summary = We profiled gene expression from a stratified cohort of subjects to define influenza vaccine response in Young and Old\n",
"Line 14: !Series_overall_design = Differential gene expression by human PBMCs from Healthy Adults receiving Influenza Vaccination (Fluvirin, Novartis). Healthy adults (older >65, younger 21-30 years) were recruited at seasonal Influenza Vaccination clinics organized by Yale University Health Services during October to December of 2014 – 2015 seasons. With informed consent, healthy individuals were recruited as per a protocol approved by Human Investigations Committee of the Yale University School of Medicine. Each subject was evaluated by a screening questionnaire determining self-reported demographic information, height, weight, medications and comorbid conditions. Participants with acute illness two weeks prior to vaccination were excluded from study. Blood samples were collected into BD Vacutainer Sodium Heparin tube at four different time points, once prior to administration of vaccine and three time points after vaccination on days 2, 7 and 28. Peripheral Blood Mononuclear Cells (PBMC) were isolated from heparinized blood using Histopaque 1077 in gradient centrifugation. About 1.0x10^7 freshly isolated PBMC were lysed in Triso and immediately stored in -800C. Total RNA in aqueous phase of Trisol - Chloroform was isolated in an automated QiaCube instrument using miRNeasy according to manufacturer’s instructions. Integrity of RNA samples were assessed by Agilent 2100 BioAnalyser Samples were processed for cRNA generation using Illumina TotalPrep cRNA Amplification Kit and subsequently hybridized to Human HT12-V4.0 BeadChip at Yale Center for Genomic Analysis (YGCA).\n",
"Line 15: !Series_overall_design =\n",
"Line 16: !Series_overall_design = The current data set, together with GSE59654, GSE59635, GSE59743, and GSE101709, represents subsets of the same overall study\n",
"Line 17: !Series_type = Expression profiling by array\n",
"Line 18: !Series_contributor = Albert,C,Shaw\n",
"Line 19: !Series_contributor = Subhasis,,Mohanty\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"Gene annotation preview:\n",
"{'ID': ['ILMN_1343048', 'ILMN_1343049', 'ILMN_1343050', 'ILMN_1343052', 'ILMN_1343059'], 'Species': [nan, nan, nan, nan, nan], 'Source': [nan, nan, nan, nan, nan], 'Search_Key': [nan, nan, nan, nan, nan], 'Transcript': [nan, nan, nan, nan, nan], 'ILMN_Gene': [nan, nan, nan, nan, nan], 'Source_Reference_ID': [nan, nan, nan, nan, nan], 'RefSeq_ID': [nan, nan, nan, nan, nan], 'Unigene_ID': [nan, nan, nan, nan, nan], 'Entrez_Gene_ID': [nan, nan, nan, nan, nan], 'GI': [nan, nan, nan, nan, nan], 'Accession': [nan, nan, nan, nan, nan], 'Symbol': ['phage_lambda_genome', 'phage_lambda_genome', 'phage_lambda_genome:low', 'phage_lambda_genome:low', 'thrB'], 'Protein_Product': [nan, nan, nan, nan, 'thrB'], 'Probe_Id': [nan, nan, nan, nan, nan], 'Array_Address_Id': [5090180, 6510136, 7560739, 1450438, 1240647], 'Probe_Type': [nan, nan, nan, nan, nan], 'Probe_Start': [nan, nan, nan, nan, nan], 'SEQUENCE': ['GAATAAAGAACAATCTGCTGATGATCCCTCCGTGGATCTGATTCGTGTAA', 'CCATGTGATACGAGGGCGCGTAGTTTGCATTATCGTTTTTATCGTTTCAA', 'CCGACAGATGTATGTAAGGCCAACGTGCTCAAATCTTCATACAGAAAGAT', 'TCTGTCACTGTCAGGAAAGTGGTAAAACTGCAACTCAATTACTGCAATGC', 'CTTGTGCCTGAGCTGTCAAAAGTAGAGCACGTCGCCGAGATGAAGGGCGC'], 'Chromosome': [nan, nan, nan, nan, nan], 'Probe_Chr_Orientation': [nan, nan, nan, nan, nan], 'Probe_Coordinates': [nan, nan, nan, nan, nan], 'Cytoband': [nan, nan, nan, nan, nan], 'Definition': [nan, nan, nan, nan, nan], 'Ontology_Component': [nan, nan, nan, nan, nan], 'Ontology_Process': [nan, nan, nan, nan, nan], 'Ontology_Function': [nan, nan, nan, nan, nan], 'Synonyms': [nan, nan, nan, nan, nan], 'Obsolete_Probe_Id': [nan, nan, nan, nan, nan], 'GB_ACC': [nan, nan, nan, nan, nan]}\n"
]
}
],
"source": [
"# 1. Let's first examine the structure of the SOFT file before trying to parse it\n",
"import gzip\n",
"\n",
"# Look at the first few lines of the SOFT file to understand its structure\n",
"print(\"Examining SOFT file structure:\")\n",
"try:\n",
" with gzip.open(soft_file, 'rt') as file:\n",
" # Read first 20 lines to understand the file structure\n",
" for i, line in enumerate(file):\n",
" if i < 20:\n",
" print(f\"Line {i}: {line.strip()}\")\n",
" else:\n",
" break\n",
"except Exception as e:\n",
" print(f\"Error reading SOFT file: {e}\")\n",
"\n",
"# 2. Now let's try a more robust approach to extract the gene annotation\n",
"# Instead of using the library function which failed, we'll implement a custom approach\n",
"try:\n",
" # First, look for the platform section which contains gene annotation\n",
" platform_data = []\n",
" with gzip.open(soft_file, 'rt') as file:\n",
" in_platform_section = False\n",
" for line in file:\n",
" if line.startswith('^PLATFORM'):\n",
" in_platform_section = True\n",
" continue\n",
" if in_platform_section and line.startswith('!platform_table_begin'):\n",
" # Next line should be the header\n",
" header = next(file).strip()\n",
" platform_data.append(header)\n",
" # Read until the end of the platform table\n",
" for table_line in file:\n",
" if table_line.startswith('!platform_table_end'):\n",
" break\n",
" platform_data.append(table_line.strip())\n",
" break\n",
" \n",
" # If we found platform data, convert it to a DataFrame\n",
" if platform_data:\n",
" import pandas as pd\n",
" import io\n",
" platform_text = '\\n'.join(platform_data)\n",
" gene_annotation = pd.read_csv(io.StringIO(platform_text), delimiter='\\t', \n",
" low_memory=False, on_bad_lines='skip')\n",
" print(\"\\nGene annotation preview:\")\n",
" print(preview_df(gene_annotation))\n",
" else:\n",
" print(\"Could not find platform table in SOFT file\")\n",
" \n",
" # Try an alternative approach - extract mapping from other sections\n",
" with gzip.open(soft_file, 'rt') as file:\n",
" for line in file:\n",
" if 'ANNOTATION information' in line or 'annotation information' in line:\n",
" print(f\"Found annotation information: {line.strip()}\")\n",
" if line.startswith('!Platform_title') or line.startswith('!platform_title'):\n",
" print(f\"Platform title: {line.strip()}\")\n",
" \n",
"except Exception as e:\n",
" print(f\"Error processing gene annotation: {e}\")\n"
]
},
{
"cell_type": "markdown",
"id": "a8672103",
"metadata": {},
"source": [
"### Step 6: Gene Identifier Mapping"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "c648fd21",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T05:40:12.691729Z",
"iopub.status.busy": "2025-03-25T05:40:12.691595Z",
"iopub.status.idle": "2025-03-25T05:40:14.180602Z",
"shell.execute_reply": "2025-03-25T05:40:14.180206Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Created gene mapping with 44837 rows\n",
"Gene mapping preview:\n",
" ID Gene\n",
"0 ILMN_1343048 phage_lambda_genome\n",
"1 ILMN_1343049 phage_lambda_genome\n",
"2 ILMN_1343050 phage_lambda_genome:low\n",
"3 ILMN_1343052 phage_lambda_genome:low\n",
"4 ILMN_1343059 thrB\n",
"\n",
"Applying gene mapping to convert probe-level data to gene-level data...\n",
"Successfully converted to gene-level data with 21344 genes\n",
"First 10 gene symbols:\n",
"Index(['A1BG', 'A1CF', 'A26C3', 'A2BP1', 'A2LD1', 'A2M', 'A2ML1', 'A3GALT2',\n",
" 'A4GALT', 'A4GNT'],\n",
" dtype='object', name='Gene')\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Gene expression data saved to ../../output/preprocess/Height/gene_data/GSE101710.csv\n"
]
}
],
"source": [
"# 1. Identify the correct columns for mapping\n",
"# From the gene annotation preview, we can see:\n",
"# - 'ID' contains the Illumina probe identifiers (ILMN_*)\n",
"# - 'Symbol' contains gene symbols\n",
"\n",
"# 2. Create gene mapping dataframe\n",
"gene_mapping = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Symbol')\n",
"print(f\"Created gene mapping with {len(gene_mapping)} rows\")\n",
"print(\"Gene mapping preview:\")\n",
"print(gene_mapping.head())\n",
"\n",
"# 3. Apply the gene mapping to convert probe-level data to gene-level data\n",
"# This handles the many-to-many relationship between probes and genes\n",
"try:\n",
" print(\"\\nApplying gene mapping to convert probe-level data to gene-level data...\")\n",
" gene_data = apply_gene_mapping(gene_data, gene_mapping)\n",
" \n",
" print(f\"Successfully converted to gene-level data with {len(gene_data)} genes\")\n",
" print(\"First 10 gene symbols:\")\n",
" print(gene_data.index[:10])\n",
" \n",
" # Check if the dataset has non-empty gene data\n",
" if gene_data.empty:\n",
" print(\"Warning: No genes were successfully mapped\")\n",
" is_gene_available = False\n",
" else:\n",
" is_gene_available = True\n",
" \n",
" # Save the gene expression data\n",
" os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
" gene_data.to_csv(out_gene_data_file)\n",
" print(f\"Gene expression data saved to {out_gene_data_file}\")\n",
" \n",
"except Exception as e:\n",
" print(f\"Error in gene mapping: {e}\")\n",
" is_gene_available = False\n"
]
},
{
"cell_type": "markdown",
"id": "2bc40526",
"metadata": {},
"source": [
"### Step 7: Data Normalization and Linking"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "1ac71355",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T05:40:14.182021Z",
"iopub.status.busy": "2025-03-25T05:40:14.181882Z",
"iopub.status.idle": "2025-03-25T05:40:14.814558Z",
"shell.execute_reply": "2025-03-25T05:40:14.814205Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Gene data shape before normalization: (46893, 79)\n",
"Gene data shape after normalization: (0, 79)\n",
"Normalized gene data saved to ../../output/preprocess/Height/gene_data/GSE101710.csv\n",
"Clinical data saved to ../../output/preprocess/Height/clinical_data/GSE101710.csv\n",
"Linked data shape: (79, 2)\n",
"Abnormality detected in the cohort: GSE101710. Preprocessing failed.\n",
"Dataset usability: False\n",
"Dataset does not contain Height data and cannot be used for association studies.\n"
]
}
],
"source": [
"import numpy as np\n",
"import os\n",
"import gzip\n",
"\n",
"# 1. Extract gene expression data using the alternative approach that worked in Step 3\n",
"with gzip.open(matrix_file, 'rt') as file:\n",
" # Find the start of the data\n",
" for line in file:\n",
" if '!series_matrix_table_begin' in line:\n",
" break\n",
" \n",
" # Read the headers and data\n",
" gene_data = pd.read_csv(file, sep='\\t', index_col=0)\n",
"\n",
"# Check if we have gene data before proceeding\n",
"if gene_data.empty:\n",
" print(\"No gene expression data found in the matrix file.\")\n",
" is_gene_available = False\n",
"else:\n",
" is_gene_available = True\n",
" print(f\"Gene data shape before normalization: {gene_data.shape}\")\n",
"\n",
" # Normalize gene symbols using the NCBI Gene database information\n",
" try:\n",
" normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n",
" print(f\"Gene data shape after normalization: {normalized_gene_data.shape}\")\n",
" \n",
" # Save the normalized gene data to the output file\n",
" os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
" normalized_gene_data.to_csv(out_gene_data_file)\n",
" print(f\"Normalized gene data saved to {out_gene_data_file}\")\n",
" except Exception as e:\n",
" print(f\"Error normalizing gene data: {e}\")\n",
" is_gene_available = False\n",
" normalized_gene_data = gene_data # Use original data if normalization fails\n",
"\n",
"# 2. Link clinical and genetic data\n",
"# In Step 2, we determined that Height data is not available in this dataset (trait_row = None)\n",
"# Create a minimal clinical dataframe with the trait column (containing NaNs)\n",
"if is_gene_available:\n",
" sample_ids = gene_data.columns\n",
" minimal_clinical_df = pd.DataFrame(index=sample_ids)\n",
" minimal_clinical_df[trait] = np.nan # Add the trait column with NaN values\n",
"\n",
" # If we have age and gender data from Step 2, add those columns\n",
" if age_row is not None:\n",
" minimal_clinical_df['Age'] = get_feature_data(clinical_data, age_row, 'Age', convert_age).iloc[0]\n",
"\n",
" if gender_row is not None:\n",
" minimal_clinical_df['Gender'] = get_feature_data(clinical_data, gender_row, 'Gender', convert_gender).iloc[0]\n",
"\n",
" minimal_clinical_df.index.name = 'Sample'\n",
"\n",
" # Save this minimal clinical data for reference\n",
" os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
" minimal_clinical_df.to_csv(out_clinical_data_file)\n",
" print(f\"Clinical data saved to {out_clinical_data_file}\")\n",
"\n",
" # Create a linked dataset \n",
" if is_gene_available and normalized_gene_data is not None:\n",
" linked_data = pd.concat([minimal_clinical_df, normalized_gene_data.T], axis=1)\n",
" linked_data.index.name = 'Sample'\n",
" print(f\"Linked data shape: {linked_data.shape}\")\n",
" else:\n",
" linked_data = minimal_clinical_df\n",
" print(\"No gene data to link with clinical data.\")\n",
"else:\n",
" # Create a minimal dataframe with just the trait for the validation step\n",
" linked_data = pd.DataFrame({trait: [np.nan]})\n",
" print(\"No gene data available, creating minimal dataframe for validation.\")\n",
"\n",
"# 4 & 5. Validate and save cohort information\n",
"# Since trait_row was None in Step 2, we know Height data is not available\n",
"is_trait_available = False # Height data is not available\n",
"\n",
"note = \"Dataset contains gene expression data but no Height measurements. This dataset is not usable for studying Height associations.\"\n",
"\n",
"# For datasets without trait data, we set is_biased to False\n",
"# This indicates the dataset is not usable due to missing trait data, not due to bias\n",
"is_biased = False\n",
"\n",
"# Final validation\n",
"is_usable = validate_and_save_cohort_info(\n",
" is_final=True, \n",
" cohort=cohort, \n",
" info_path=json_path, \n",
" is_gene_available=is_gene_available, \n",
" is_trait_available=is_trait_available, \n",
" is_biased=is_biased,\n",
" df=linked_data,\n",
" note=note\n",
")\n",
"\n",
"# 6. Since there is no trait data, the dataset is not usable for our association study\n",
"# So we should not save it to out_data_file\n",
"print(f\"Dataset usability: {is_usable}\")\n",
"if is_usable:\n",
" os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
" linked_data.to_csv(out_data_file)\n",
" print(f\"Linked data saved to {out_data_file}\")\n",
"else:\n",
" print(\"Dataset does not contain Height data and cannot be used for association studies.\")"
]
}
],
"metadata": {
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.16"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|