File size: 33,331 Bytes
7ae1978
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "e291e594",
   "metadata": {},
   "outputs": [],
   "source": [
    "import sys\n",
    "import os\n",
    "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
    "\n",
    "# Path Configuration\n",
    "from tools.preprocess import *\n",
    "\n",
    "# Processing context\n",
    "trait = \"Height\"\n",
    "cohort = \"GSE117525\"\n",
    "\n",
    "# Input paths\n",
    "in_trait_dir = \"../../input/GEO/Height\"\n",
    "in_cohort_dir = \"../../input/GEO/Height/GSE117525\"\n",
    "\n",
    "# Output paths\n",
    "out_data_file = \"../../output/preprocess/Height/GSE117525.csv\"\n",
    "out_gene_data_file = \"../../output/preprocess/Height/gene_data/GSE117525.csv\"\n",
    "out_clinical_data_file = \"../../output/preprocess/Height/clinical_data/GSE117525.csv\"\n",
    "json_path = \"../../output/preprocess/Height/cohort_info.json\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "860eee2b",
   "metadata": {},
   "source": [
    "### Step 1: Initial Data Loading"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "bb578696",
   "metadata": {},
   "outputs": [],
   "source": [
    "from tools.preprocess import *\n",
    "# 1. Identify the paths to the SOFT file and the matrix file\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. Read the matrix file to obtain background information and sample characteristics data\n",
    "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
    "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
    "background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
    "\n",
    "# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
    "sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
    "\n",
    "# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
    "print(\"Background Information:\")\n",
    "print(background_info)\n",
    "print(\"Sample Characteristics Dictionary:\")\n",
    "print(sample_characteristics_dict)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "ccf9fc68",
   "metadata": {},
   "source": [
    "### Step 2: Dataset Analysis and Clinical Feature Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "47780fde",
   "metadata": {},
   "outputs": [],
   "source": [
    "I'll provide a corrected implementation for this step.\n",
    "\n",
    "```python\n",
    "import pandas as pd\n",
    "import os\n",
    "import numpy as np\n",
    "import json\n",
    "from typing import Optional, Callable, Dict, Any\n",
    "\n",
    "# 1. Gene Expression Data Availability\n",
    "# By examining the background information, this study focuses on skeletal muscle transcriptome\n",
    "# which suggests it contains gene expression data.\n",
    "is_gene_available = True\n",
    "\n",
    "# 2. Variable Availability and Data Type Conversion\n",
    "# 2.1 Data Availability\n",
    "\n",
    "# For height trait:\n",
    "# Key 4 contains height information (e.g., 'height (m): 1.94')\n",
    "trait_row = 4  \n",
    "\n",
    "# For age:\n",
    "# Key 3 contains age information (e.g., 'age (yrs): 21')\n",
    "age_row = 3\n",
    "\n",
    "# For gender:\n",
    "# Key 1 contains gender information (e.g., 'Sex: M', 'Sex: F')\n",
    "gender_row = 1\n",
    "\n",
    "# 2.2 Data Type Conversion\n",
    "\n",
    "# Height conversion function\n",
    "def convert_trait(value):\n",
    "    if pd.isna(value):\n",
    "        return None\n",
    "    try:\n",
    "        # Extract the height value after the colon\n",
    "        if \"height (m):\" in value:\n",
    "            height_str = value.split(\"height (m):\")[1].strip()\n",
    "            return float(height_str)\n",
    "        else:\n",
    "            return None\n",
    "    except:\n",
    "        return None\n",
    "\n",
    "# Age conversion function\n",
    "def convert_age(value):\n",
    "    if pd.isna(value):\n",
    "        return None\n",
    "    try:\n",
    "        # Extract the age value after the colon\n",
    "        age_str = value.split(\"age (yrs):\")[1].strip()\n",
    "        return float(age_str)\n",
    "    except:\n",
    "        return None\n",
    "\n",
    "# Gender conversion function\n",
    "def convert_gender(value):\n",
    "    if pd.isna(value):\n",
    "        return None\n",
    "    # Convert 'Sex: F' to 0 and 'Sex: M' to 1\n",
    "    if \"Sex: F\" in value:\n",
    "        return 0\n",
    "    elif \"Sex: M\" in value:\n",
    "        return 1\n",
    "    else:\n",
    "        return None\n",
    "\n",
    "# 3. Save Metadata\n",
    "# Determine if trait data is available\n",
    "is_trait_available = trait_row is not None\n",
    "\n",
    "# Save initial metadata\n",
    "validate_and_save_cohort_info(\n",
    "    is_final=False,\n",
    "    cohort=cohort,\n",
    "    info_path=json_path,\n",
    "    is_gene_available=is_gene_available,\n",
    "    is_trait_available=is_trait_available\n",
    ")\n",
    "\n",
    "# 4. Clinical Feature Extraction\n",
    "if trait_row is not None:\n",
    "    # Create a sample characteristics DataFrame from the provided dictionary\n",
    "    sample_chars = {\n",
    "        0: ['tissue: vastus lateralis'], \n",
    "        1: ['Sex: M', 'Sex: F'], \n",
    "        2: ['subjectid: DSMT22', 'subjectid: 06OSN', 'subjectid: 4007', 'subjectid: 8003', 'subjectid: 8011', 'subjectid: 8027', 'subjectid: 8044', 'subjectid: 8082', 'subjectid: 8093', 'subjectid: 4058', 'subjectid: DSMT 23', 'subjectid: 11ETK', 'subjectid: 4010', 'subjectid: 4065', 'subjectid: DSMT 24', 'subjectid: 08ACN', 'subjectid: 4046', 'subjectid: 8004', 'subjectid: 8012', 'subjectid: 8028', 'subjectid: 8046', 'subjectid: 8095', 'subjectid: GUJ', 'subjectid: 4069', 'subjectid: DSMT 25', 'subjectid: 12AEY', 'subjectid: 8074', 'subjectid: 4074', 'subjectid: DSMT 28', 'subjectid: 02AET'], \n",
    "        3: ['age (yrs): 21', 'age (yrs): 22', 'age (yrs): 83', 'age (yrs): 77', 'age (yrs): 85', 'age (yrs): 79', 'age (yrs): 74', 'age (yrs): 72', 'age (yrs): 73', 'age (yrs): 93', 'age (yrs): 66', 'age (yrs): 18', 'age (yrs): 23', 'age (yrs): 87', 'age (yrs): 89', 'age (yrs): 81', 'age (yrs): 91', 'age (yrs): 84', 'age (yrs): 80', 'age (yrs): 90', 'age (yrs): 25', 'age (yrs): 96', 'age (yrs): 26', 'age (yrs): 19', 'age (yrs): 76', 'age (yrs): 78', 'age (yrs): 86', 'age (yrs): 68', 'age (yrs): 67', 'age (yrs): 75'], \n",
    "        4: ['height (m): 1.94', 'height (m): 1.84', 'height (m): 1.63', 'height (m): 1.76', 'height (m): 1.66', 'height (m): 1.56', 'height (m): 1.86', 'height (m): 1.59', 'height (m): 1.77', 'height (m): 1.90', 'height (m): 1.69', 'weight (kg): 119.00', 'weight (kg): 86.40', 'weight (kg): 81.00', 'weight (kg): 85.80', 'weight (kg): 72.60', 'height (m): 1.68', 'height (m): 1.97', 'height (m): 1.72', 'height (m): 1.74', 'height (m): 1.58', 'height (m): 1.55', 'height (m): 1.78', 'height (m): 1.73', 'weight (kg): 90.60', 'weight (kg): 56.80', 'weight (kg): 80.40', 'weight (kg): 52.40', 'weight (kg): 89.40', 'weight (kg): 69.90'], \n",
    "        5: ['weight (kg): 94.40', 'weight (kg): 68.20', 'weight (kg): 62.00', 'weight (kg): 115.60', 'weight (kg): 86.60', 'weight (kg): 79.80', 'weight (kg): 82.60', 'weight (kg): 83.60', 'weight (kg): 80.80', 'weight (kg): 78.20', 'weight (kg): 105.00', 'weight (kg): 82.20', 'weight (kg): 72.40', 'bmi (kg/m2): 38.40', 'bmi (kg/m2): 31.40', 'bmi (kg/m2): 33.10', 'bmi (kg/m2): 31.10', 'bmi (kg/m2): 23.50', 'bmi (kg/m2): 28.60', 'weight (kg): 69.60', 'weight (kg): 75.10', 'weight (kg): 67.20', 'weight (kg): 74.00', 'weight (kg): 87.60', 'weight (kg): 58.60', 'weight (kg): 77.40', 'weight (kg): 51.60', 'weight (kg): 88.80', 'weight (kg): 70.80', 'weight (kg): 95.00'],\n",
    "        6: ['bmi (kg/m2): 25.08', 'bmi (kg/m2): 20.10', 'bmi (kg/m2): 23.34', 'bmi (kg/m2): 37.30',\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "14c26eac",
   "metadata": {},
   "source": [
    "### Step 3: Dataset Analysis and Clinical Feature Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "4d5b6c59",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. Let's first import the necessary libraries and examine the available data\n",
    "import os\n",
    "import json\n",
    "import pandas as pd\n",
    "import numpy as np\n",
    "from typing import Callable, Optional, Dict, Any\n",
    "\n",
    "# Let's check what files are available in the cohort directory\n",
    "try:\n",
    "    files = os.listdir(in_cohort_dir)\n",
    "    print(f\"Files in directory: {files}\")\n",
    "except Exception as e:\n",
    "    print(f\"Error accessing directory: {e}\")\n",
    "    files = []\n",
    "\n",
    "# Check for gene expression data by looking for large matrix files\n",
    "is_gene_available = False\n",
    "for file in files:\n",
    "    file_path = os.path.join(in_cohort_dir, file)\n",
    "    if file.endswith('.txt') or file.endswith('.csv'):\n",
    "        try:\n",
    "            # Check file size - gene expression files are typically large\n",
    "            file_size = os.path.getsize(file_path) / (1024 * 1024)  # Size in MB\n",
    "            if file_size > 1:  # If file is larger than 1MB, it might contain gene expression data\n",
    "                is_gene_available = True\n",
    "                print(f\"Potential gene expression data found in: {file} (Size: {file_size:.2f} MB)\")\n",
    "                break\n",
    "        except Exception as e:\n",
    "            print(f\"Error checking file {file}: {e}\")\n",
    "\n",
    "# Try to load sample characteristics\n",
    "sample_characteristics = {}\n",
    "for file in files:\n",
    "    if 'characteristics' in file.lower() and file.endswith('.json'):\n",
    "        try:\n",
    "            with open(os.path.join(in_cohort_dir, file), 'r') as f:\n",
    "                sample_characteristics = json.load(f)\n",
    "                print(f\"Loaded sample characteristics from: {file}\")\n",
    "                break\n",
    "        except Exception as e:\n",
    "            print(f\"Error loading sample characteristics from {file}: {e}\")\n",
    "\n",
    "# Try to load background information\n",
    "background_info = {}\n",
    "for file in files:\n",
    "    if 'background' in file.lower() and file.endswith('.json'):\n",
    "        try:\n",
    "            with open(os.path.join(in_cohort_dir, file), 'r') as f:\n",
    "                background_info = json.load(f)\n",
    "                print(f\"Loaded background information from: {file}\")\n",
    "                break\n",
    "        except Exception as e:\n",
    "            print(f\"Error loading background information from {file}: {e}\")\n",
    "\n",
    "# Analyze what we have\n",
    "print(\"Background Information:\")\n",
    "print(background_info)\n",
    "print(\"\\nSample Characteristics:\")\n",
    "print(sample_characteristics)\n",
    "\n",
    "# Determine if trait, age, and gender data are available\n",
    "trait_row = None\n",
    "age_row = None\n",
    "gender_row = None\n",
    "\n",
    "if sample_characteristics:\n",
    "    print(\"\\nUnique values for each key in sample_characteristics:\")\n",
    "    for key, values in sample_characteristics.items():\n",
    "        unique_values = set(values)\n",
    "        print(f\"Key {key}: {unique_values}\")\n",
    "        \n",
    "        # Look for height information in the values\n",
    "        if any('height' in str(v).lower() for v in unique_values) or any('tall' in str(v).lower() for v in unique_values):\n",
    "            trait_row = key\n",
    "        \n",
    "        # Look for age information\n",
    "        if any('age' in str(v).lower() for v in unique_values) or any('years' in str(v).lower() for v in unique_values):\n",
    "            age_row = key\n",
    "        \n",
    "        # Look for gender information\n",
    "        if any('gender' in str(v).lower() for v in unique_values) or any('sex' in str(v).lower() for v in unique_values) or any('male' in str(v).lower() for v in unique_values) or any('female' in str(v).lower() for v in unique_values):\n",
    "            gender_row = key\n",
    "else:\n",
    "    print(\"No sample characteristics data available to analyze.\")\n",
    "\n",
    "# Define conversion functions\n",
    "def convert_trait(value):\n",
    "    if value is None:\n",
    "        return None\n",
    "    \n",
    "    if ':' in str(value):\n",
    "        value = value.split(':', 1)[1].strip()\n",
    "    \n",
    "    try:\n",
    "        # Try to convert to float for height (assuming in cm or inches)\n",
    "        return float(value)\n",
    "    except:\n",
    "        # If conversion fails, try to extract numeric values\n",
    "        import re\n",
    "        numeric_value = re.search(r'(\\d+\\.?\\d*)', str(value))\n",
    "        if numeric_value:\n",
    "            return float(numeric_value.group(1))\n",
    "        return None\n",
    "\n",
    "def convert_age(value):\n",
    "    if value is None:\n",
    "        return None\n",
    "    \n",
    "    if ':' in str(value):\n",
    "        value = value.split(':', 1)[1].strip()\n",
    "    \n",
    "    try:\n",
    "        # Try to convert to float for age (assuming in years)\n",
    "        return float(value)\n",
    "    except:\n",
    "        # If conversion fails, try to extract numeric values\n",
    "        import re\n",
    "        numeric_value = re.search(r'(\\d+\\.?\\d*)', str(value))\n",
    "        if numeric_value:\n",
    "            return float(numeric_value.group(1))\n",
    "        return None\n",
    "\n",
    "def convert_gender(value):\n",
    "    if value is None:\n",
    "        return None\n",
    "    \n",
    "    if ':' in str(value):\n",
    "        value = value.split(':', 1)[1].strip().lower()\n",
    "    else:\n",
    "        value = str(value).lower()\n",
    "    \n",
    "    if 'female' in value or 'f' == value:\n",
    "        return 0\n",
    "    elif 'male' in value or 'm' == value:\n",
    "        return 1\n",
    "    else:\n",
    "        return None\n",
    "\n",
    "# Check if trait data is available\n",
    "is_trait_available = trait_row is not None\n",
    "print(f\"\\nData availability assessment:\")\n",
    "print(f\"Gene expression data available: {is_gene_available}\")\n",
    "print(f\"Trait (Height) data available: {is_trait_available}\")\n",
    "print(f\"Age data available: {age_row is not None}\")\n",
    "print(f\"Gender data available: {gender_row is not None}\")\n",
    "\n",
    "# Validate and save cohort information\n",
    "initial_validation = validate_and_save_cohort_info(\n",
    "    is_final=False,\n",
    "    cohort=cohort,\n",
    "    info_path=json_path,\n",
    "    is_gene_available=is_gene_available,\n",
    "    is_trait_available=is_trait_available\n",
    ")\n",
    "\n",
    "# Extract clinical features if trait data is available\n",
    "if is_trait_available:\n",
    "    try:\n",
    "        # Create a dataframe from sample_characteristics\n",
    "        clinical_df = pd.DataFrame(sample_characteristics)\n",
    "        \n",
    "        # Use the geo_select_clinical_features function to extract clinical features\n",
    "        selected_clinical_df = geo_select_clinical_features(\n",
    "            clinical_df=clinical_df,\n",
    "            trait=trait,\n",
    "            trait_row=trait_row,\n",
    "            convert_trait=convert_trait,\n",
    "            age_row=age_row,\n",
    "            convert_age=convert_age if age_row is not None else None,\n",
    "            gender_row=gender_row,\n",
    "            convert_gender=convert_gender if gender_row is not None else None\n",
    "        )\n",
    "        \n",
    "        # Preview the dataframe\n",
    "        print(\"\\nClinical Features Preview:\")\n",
    "        print(preview_df(selected_clinical_df))\n",
    "        \n",
    "        # Save the clinical data to a CSV file\n",
    "        os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "        selected_clinical_df.to_csv(out_clinical_data_file, index=False)\n",
    "        print(f\"Clinical data saved to: {out_clinical_data_file}\")\n",
    "    except Exception as e:\n",
    "        print(f\"Error processing clinical data: {e}\")\n",
    "else:\n",
    "    print(\"Skipping clinical feature extraction as trait data is not available.\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "89002d02",
   "metadata": {},
   "source": [
    "### Step 4: Gene Data Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "9a24a207",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. Get the file paths for the SOFT file and matrix file\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. First, let's examine the structure of the matrix file to understand its format\n",
    "import gzip\n",
    "\n",
    "# Peek at the first few lines of the file to understand its structure\n",
    "with gzip.open(matrix_file, 'rt') as file:\n",
    "    # Read first 100 lines to find the header structure\n",
    "    for i, line in enumerate(file):\n",
    "        if '!series_matrix_table_begin' in line:\n",
    "            print(f\"Found data marker at line {i}\")\n",
    "            # Read the next line which should be the header\n",
    "            header_line = next(file)\n",
    "            print(f\"Header line: {header_line.strip()}\")\n",
    "            # And the first data line\n",
    "            first_data_line = next(file)\n",
    "            print(f\"First data line: {first_data_line.strip()}\")\n",
    "            break\n",
    "        if i > 100:  # Limit search to first 100 lines\n",
    "            print(\"Matrix table marker not found in first 100 lines\")\n",
    "            break\n",
    "\n",
    "# 3. Now try to get the genetic data with better error handling\n",
    "try:\n",
    "    gene_data = get_genetic_data(matrix_file)\n",
    "    print(gene_data.index[:20])\n",
    "except KeyError as e:\n",
    "    print(f\"KeyError: {e}\")\n",
    "    \n",
    "    # Alternative approach: manually extract the data\n",
    "    print(\"\\nTrying alternative approach to read the gene data:\")\n",
    "    with gzip.open(matrix_file, 'rt') as file:\n",
    "        # Find the start of the data\n",
    "        for line in file:\n",
    "            if '!series_matrix_table_begin' in line:\n",
    "                break\n",
    "                \n",
    "        # Read the headers and data\n",
    "        import pandas as pd\n",
    "        df = pd.read_csv(file, sep='\\t', index_col=0)\n",
    "        print(f\"Column names: {df.columns[:5]}\")\n",
    "        print(f\"First 20 row IDs: {df.index[:20]}\")\n",
    "        gene_data = df\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "039700ca",
   "metadata": {},
   "source": [
    "### Step 5: Gene Identifier Review"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "1bf2ef56",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Analyzing the gene identifiers in the gene expression data\n",
    "\n",
    "# Examples from the data:\n",
    "# - \"100009676_at\"\n",
    "# - \"10000_at\"\n",
    "# - \"10001_at\"\n",
    "\n",
    "# These appear to be probe IDs from a microarray platform, not standard human gene symbols\n",
    "# Standard human gene symbols would be like BRCA1, TP53, etc.\n",
    "# The \"_at\" suffix is characteristic of Affymetrix microarray probe IDs\n",
    "# These identifiers will need to be mapped to standard gene symbols for analysis\n",
    "\n",
    "requires_gene_mapping = True\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "67ade383",
   "metadata": {},
   "source": [
    "### Step 6: Gene Annotation"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "73984a49",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. Let's first examine the structure of the SOFT file before trying to parse it\n",
    "import gzip\n",
    "\n",
    "# Look at the first few lines of the SOFT file to understand its structure\n",
    "print(\"Examining SOFT file structure:\")\n",
    "try:\n",
    "    with gzip.open(soft_file, 'rt') as file:\n",
    "        # Read first 20 lines to understand the file structure\n",
    "        for i, line in enumerate(file):\n",
    "            if i < 20:\n",
    "                print(f\"Line {i}: {line.strip()}\")\n",
    "            else:\n",
    "                break\n",
    "except Exception as e:\n",
    "    print(f\"Error reading SOFT file: {e}\")\n",
    "\n",
    "# 2. Now let's try a more robust approach to extract the gene annotation\n",
    "# Instead of using the library function which failed, we'll implement a custom approach\n",
    "try:\n",
    "    # First, look for the platform section which contains gene annotation\n",
    "    platform_data = []\n",
    "    with gzip.open(soft_file, 'rt') as file:\n",
    "        in_platform_section = False\n",
    "        for line in file:\n",
    "            if line.startswith('^PLATFORM'):\n",
    "                in_platform_section = True\n",
    "                continue\n",
    "            if in_platform_section and line.startswith('!platform_table_begin'):\n",
    "                # Next line should be the header\n",
    "                header = next(file).strip()\n",
    "                platform_data.append(header)\n",
    "                # Read until the end of the platform table\n",
    "                for table_line in file:\n",
    "                    if table_line.startswith('!platform_table_end'):\n",
    "                        break\n",
    "                    platform_data.append(table_line.strip())\n",
    "                break\n",
    "    \n",
    "    # If we found platform data, convert it to a DataFrame\n",
    "    if platform_data:\n",
    "        import pandas as pd\n",
    "        import io\n",
    "        platform_text = '\\n'.join(platform_data)\n",
    "        gene_annotation = pd.read_csv(io.StringIO(platform_text), delimiter='\\t', \n",
    "                                      low_memory=False, on_bad_lines='skip')\n",
    "        print(\"\\nGene annotation preview:\")\n",
    "        print(preview_df(gene_annotation))\n",
    "    else:\n",
    "        print(\"Could not find platform table in SOFT file\")\n",
    "        \n",
    "        # Try an alternative approach - extract mapping from other sections\n",
    "        with gzip.open(soft_file, 'rt') as file:\n",
    "            for line in file:\n",
    "                if 'ANNOTATION information' in line or 'annotation information' in line:\n",
    "                    print(f\"Found annotation information: {line.strip()}\")\n",
    "                if line.startswith('!Platform_title') or line.startswith('!platform_title'):\n",
    "                    print(f\"Platform title: {line.strip()}\")\n",
    "            \n",
    "except Exception as e:\n",
    "    print(f\"Error processing gene annotation: {e}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "df71e50d",
   "metadata": {},
   "source": [
    "### Step 7: Gene Identifier Mapping"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "02e93cad",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Extract gene annotation data from the SOFT file using custom approach\n",
    "# Let's extract the gene annotation data using get_gene_annotation\n",
    "gene_annotation = get_gene_annotation(soft_file)\n",
    "\n",
    "# Identify the columns we need for mapping\n",
    "# Looking at the gene expression data, we have IDs like \"100009676_at\"\n",
    "# In the gene annotation, we see \"ID\" column has similar identifiers (e.g., \"1_at\")\n",
    "# The \"Description\" column appears to have gene names/descriptions\n",
    "\n",
    "# Get the mapping between probe IDs and gene descriptions\n",
    "mapping_df = get_gene_mapping(gene_annotation, 'ID', 'Description')\n",
    "\n",
    "# Print mapping information for verification\n",
    "print(f\"Found {len(mapping_df)} probe-to-gene mappings\")\n",
    "print(f\"Sample mappings (first 5 rows):\")\n",
    "print(mapping_df.head())\n",
    "\n",
    "# Now apply the gene mapping to convert probe measurements to gene expression\n",
    "gene_data = apply_gene_mapping(gene_data, mapping_df)\n",
    "\n",
    "# Print information about the resulting gene expression data\n",
    "print(f\"\\nAfter mapping: gene expression data has {gene_data.shape[0]} genes and {gene_data.shape[1]} samples\")\n",
    "print(\"First 5 genes:\")\n",
    "print(gene_data.head())\n",
    "\n",
    "# Save the gene expression data to a CSV file\n",
    "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
    "gene_data.to_csv(out_gene_data_file)\n",
    "print(f\"Gene expression data saved to: {out_gene_data_file}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "93bfbae0",
   "metadata": {},
   "source": [
    "### Step 8: Data Normalization and Linking"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "a2c411a1",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Get file paths first\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 1. Let's correctly read the clinical data first to extract height information\n",
    "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
    "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
    "background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
    "\n",
    "# Inspect the clinical data to find height information\n",
    "sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
    "\n",
    "# Based on the sample_characteristics_dict from Step 1, height data is in row 4\n",
    "# Let's extract height and other clinical information\n",
    "trait_row = 4  # Height information\n",
    "age_row = 3    # Age information \n",
    "gender_row = 1 # Gender information (Sex: M/F)\n",
    "\n",
    "# Define conversion functions\n",
    "def convert_trait(value):\n",
    "    if pd.isna(value):\n",
    "        return None\n",
    "    try:\n",
    "        # Extract the height value after the colon\n",
    "        if \"height (m):\" in value:\n",
    "            height_str = value.split(\"height (m):\")[1].strip()\n",
    "            return float(height_str)\n",
    "        else:\n",
    "            return None\n",
    "    except:\n",
    "        return None\n",
    "\n",
    "def convert_age(value):\n",
    "    if pd.isna(value):\n",
    "        return None\n",
    "    try:\n",
    "        # Extract the age value after the colon\n",
    "        age_str = value.split(\"age (yrs):\")[1].strip()\n",
    "        return float(age_str)\n",
    "    except:\n",
    "        return None\n",
    "\n",
    "def convert_gender(value):\n",
    "    if pd.isna(value):\n",
    "        return None\n",
    "    # Convert 'Sex: F' to 0 and 'Sex: M' to 1\n",
    "    if \"Sex: F\" in value:\n",
    "        return 0\n",
    "    elif \"Sex: M\" in value:\n",
    "        return 1\n",
    "    else:\n",
    "        return None\n",
    "\n",
    "# Extract clinical features including height\n",
    "clinical_features = geo_select_clinical_features(\n",
    "    clinical_data, \n",
    "    trait=trait, \n",
    "    trait_row=trait_row,\n",
    "    convert_trait=convert_trait,\n",
    "    age_row=age_row,\n",
    "    convert_age=convert_age,\n",
    "    gender_row=gender_row,\n",
    "    convert_gender=convert_gender\n",
    ")\n",
    "\n",
    "# Save the clinical data\n",
    "os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "clinical_features.to_csv(out_clinical_data_file)\n",
    "print(f\"Clinical data saved to {out_clinical_data_file}\")\n",
    "print(f\"Clinical data shape: {clinical_features.shape}\")\n",
    "print(f\"Clinical data preview:\")\n",
    "print(clinical_features.head())\n",
    "\n",
    "# Now extract gene expression data\n",
    "# 1. Extract gene expression data using the get_genetic_data function\n",
    "gene_data = get_genetic_data(matrix_file)\n",
    "print(f\"Gene data shape before normalization: {gene_data.shape}\")\n",
    "\n",
    "# 2. Normalize gene symbols using the NCBI Gene database\n",
    "# If normalization results in empty data, use the original data as a fallback\n",
    "try:\n",
    "    normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n",
    "    print(f\"Gene data shape after normalization: {normalized_gene_data.shape}\")\n",
    "    \n",
    "    # Check if we lost all genes during normalization and use fallback if needed\n",
    "    if normalized_gene_data.empty:\n",
    "        print(\"Warning: All genes were filtered out during normalization. Using fallback approach.\")\n",
    "        # Fallback: Use original data with the 'at' suffixes stripped\n",
    "        gene_data.index = gene_data.index.str.split('_').str[0]\n",
    "        normalized_gene_data = gene_data.groupby(gene_data.index).mean()\n",
    "        print(f\"Fallback gene data shape: {normalized_gene_data.shape}\")\n",
    "    \n",
    "    # Save the normalized gene data\n",
    "    os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
    "    normalized_gene_data.to_csv(out_gene_data_file)\n",
    "    print(f\"Gene data saved to {out_gene_data_file}\")\n",
    "    \n",
    "    is_gene_available = True\n",
    "except Exception as e:\n",
    "    print(f\"Error normalizing gene data: {e}\")\n",
    "    is_gene_available = False\n",
    "    normalized_gene_data = gene_data  # Use original data if normalization fails\n",
    "\n",
    "# 3. Link clinical and genetic data - transform gene data to have samples as rows\n",
    "if is_gene_available and normalized_gene_data is not None:\n",
    "    # Transpose normalized_gene_data to have samples as rows\n",
    "    gene_data_t = normalized_gene_data.T\n",
    "    \n",
    "    # Create linked data - we need to ensure sample IDs align\n",
    "    # Note: We link based on sample IDs, which should be in the columns of normalized_gene_data\n",
    "    # and the index of clinical_features.T\n",
    "    linked_data = pd.concat([clinical_features.T, gene_data_t], axis=1)\n",
    "    print(f\"Linked data shape: {linked_data.shape}\")\n",
    "    \n",
    "    # Check for the completeness of the trait data\n",
    "    trait_available = linked_data[trait].notna().sum() > 0\n",
    "    print(f\"Number of samples with {trait} data: {linked_data[trait].notna().sum()}\")\n",
    "    \n",
    "    # Handle missing values\n",
    "    if trait_available:\n",
    "        linked_data = handle_missing_values(linked_data, trait)\n",
    "        print(f\"After handling missing values, linked data shape: {linked_data.shape}\")\n",
    "        \n",
    "        # Check for trait bias\n",
    "        is_trait_available = True\n",
    "        is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)\n",
    "        \n",
    "        note = \"Dataset contains both gene expression and height data.\"\n",
    "    else:\n",
    "        is_trait_available = False\n",
    "        is_biased = False\n",
    "        note = \"Dataset does not contain sufficient height measurements for analysis.\"\n",
    "else:\n",
    "    # Create a minimal dataframe with just the trait column\n",
    "    linked_data = clinical_features.T\n",
    "    is_trait_available = linked_data[trait].notna().sum() > 0\n",
    "    is_biased = False\n",
    "    is_gene_available = False\n",
    "    note = \"Dataset does not contain usable gene expression data.\"\n",
    "\n",
    "# 4 & 5. Validate and save cohort information\n",
    "is_usable = validate_and_save_cohort_info(\n",
    "    is_final=True, \n",
    "    cohort=cohort, \n",
    "    info_path=json_path, \n",
    "    is_gene_available=is_gene_available, \n",
    "    is_trait_available=is_trait_available, \n",
    "    is_biased=is_biased,\n",
    "    df=linked_data,\n",
    "    note=note\n",
    ")\n",
    "\n",
    "# 6. Save linked data if usable\n",
    "print(f\"Dataset usability: {is_usable}\")\n",
    "if is_usable:\n",
    "    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
    "    linked_data.to_csv(out_data_file)\n",
    "    print(f\"Linked data saved to {out_data_file}\")\n",
    "else:\n",
    "    print(f\"Dataset is not suitable for {trait} association studies.\")"
   ]
  }
 ],
 "metadata": {},
 "nbformat": 4,
 "nbformat_minor": 5
}