File size: 25,786 Bytes
6bc7e45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "5b8717cf",
   "metadata": {},
   "outputs": [],
   "source": [
    "import sys\n",
    "import os\n",
    "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
    "\n",
    "# Path Configuration\n",
    "from tools.preprocess import *\n",
    "\n",
    "# Processing context\n",
    "trait = \"Height\"\n",
    "cohort = \"GSE131835\"\n",
    "\n",
    "# Input paths\n",
    "in_trait_dir = \"../../input/GEO/Height\"\n",
    "in_cohort_dir = \"../../input/GEO/Height/GSE131835\"\n",
    "\n",
    "# Output paths\n",
    "out_data_file = \"../../output/preprocess/Height/GSE131835.csv\"\n",
    "out_gene_data_file = \"../../output/preprocess/Height/gene_data/GSE131835.csv\"\n",
    "out_clinical_data_file = \"../../output/preprocess/Height/clinical_data/GSE131835.csv\"\n",
    "json_path = \"../../output/preprocess/Height/cohort_info.json\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "03ab6c0c",
   "metadata": {},
   "source": [
    "### Step 1: Initial Data Loading"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "13683a3d",
   "metadata": {},
   "outputs": [],
   "source": [
    "from tools.preprocess import *\n",
    "# 1. Identify the paths to the SOFT file and the matrix file\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. Read the matrix file to obtain background information and sample characteristics data\n",
    "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
    "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
    "background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
    "\n",
    "# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
    "sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
    "\n",
    "# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
    "print(\"Background Information:\")\n",
    "print(background_info)\n",
    "print(\"Sample Characteristics Dictionary:\")\n",
    "print(sample_characteristics_dict)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "86769e3d",
   "metadata": {},
   "source": [
    "### Step 2: Dataset Analysis and Clinical Feature Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "5613373d",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. Gene Expression Data Availability\n",
    "# Based on the background information, this dataset contains gene expression data from adipose tissues\n",
    "# The description mentions using Affymetrix Clariom S Microarray to analyze gene expression\n",
    "# It's not just miRNA or methylation data, so gene expression is available\n",
    "is_gene_available = True\n",
    "\n",
    "# 2. Variable Availability and Data Type Conversion\n",
    "# 2.1 Data Availability\n",
    "\n",
    "# Height data is available in the row 5 as 'height(cm): XXX'\n",
    "trait_row = 5  # height is available in row 5\n",
    "\n",
    "# Age data is available in row 3 as 'age: XX'\n",
    "age_row = 3   # age is available in row 3\n",
    "\n",
    "# Gender/Sex data is available in row 2 as 'Sex: Male/Female'  \n",
    "gender_row = 2  # gender is available in row 2\n",
    "\n",
    "# 2.2 Data Type Conversion Functions\n",
    "\n",
    "def convert_trait(value):\n",
    "    \"\"\"Convert height values to numeric (continuous) format.\"\"\"\n",
    "    try:\n",
    "        # Extract the number after the 'height(cm):' prefix\n",
    "        if \":\" in value:\n",
    "            height_str = value.split(\":\", 1)[1].strip()\n",
    "            return float(height_str)\n",
    "        else:\n",
    "            return None\n",
    "    except (ValueError, IndexError):\n",
    "        return None\n",
    "\n",
    "def convert_age(value):\n",
    "    \"\"\"Convert age values to numeric (continuous) format.\"\"\"\n",
    "    try:\n",
    "        # Extract the number after the 'age:' prefix\n",
    "        if \":\" in value:\n",
    "            age_str = value.split(\":\", 1)[1].strip()\n",
    "            return float(age_str)\n",
    "        else:\n",
    "            return None\n",
    "    except (ValueError, IndexError):\n",
    "        return None\n",
    "\n",
    "def convert_gender(value):\n",
    "    \"\"\"Convert gender to binary format (0 for female, 1 for male).\"\"\"\n",
    "    try:\n",
    "        if \":\" in value:\n",
    "            gender_str = value.split(\":\", 1)[1].strip().lower()\n",
    "            if \"female\" in gender_str:\n",
    "                return 0\n",
    "            elif \"male\" in gender_str:\n",
    "                return 1\n",
    "            else:\n",
    "                return None\n",
    "        else:\n",
    "            return None\n",
    "    except (ValueError, IndexError):\n",
    "        return None\n",
    "\n",
    "# 3. Save Metadata - Initial Filtering\n",
    "# Trait data is available since trait_row is not None\n",
    "is_trait_available = trait_row is not None\n",
    "\n",
    "# Validate and save cohort info (initial filtering)\n",
    "validate_and_save_cohort_info(\n",
    "    is_final=False,\n",
    "    cohort=cohort,\n",
    "    info_path=json_path,\n",
    "    is_gene_available=is_gene_available,\n",
    "    is_trait_available=is_trait_available\n",
    ")\n",
    "\n",
    "# 4. Clinical Feature Extraction\n",
    "# Only proceed if trait_row is not None, which it is in this case\n",
    "if trait_row is not None:\n",
    "    # Create a sample characteristics dataframe in a format that works with geo_select_clinical_features\n",
    "    # Create a dictionary with the sample characteristics data\n",
    "    sample_chars = {0: ['tissue: Visceral', 'tissue: SubCut'], \n",
    "                    1: ['group: CWS', 'group: CWL', 'group: CONTROL', 'group: CONTROl'], \n",
    "                    2: ['Sex: Male', 'Sex: Female'], \n",
    "                    3: ['age: 51', 'age: 64', 'age: 62', 'age: 78', 'age: 47', 'age: 59', 'age: 57', 'age: 58', \n",
    "                        'age: 53', 'age: 49', 'age: 54', 'age: 60', 'age: 56', 'age: 41', 'age: 76', 'age: 81', \n",
    "                        'age: 48', 'age: 65', 'age: 68', 'age: 72'], \n",
    "                    4: ['tumour: Oesophageal adenocarcinoma', 'tumour: Oesophageal SCC', 'tumour: Gastric adenocarcinoma', \n",
    "                        'tumour: N/A', 'tumour: Gastric'], \n",
    "                    5: ['height(cm): 178', 'height(cm): 170', 'height(cm): 166', 'height(cm): 160', 'height(cm): 180', \n",
    "                        'height(cm): 163', 'height(cm): 183', 'height(cm): 172', 'height(cm): 169', 'height(cm): 158', \n",
    "                        'height(cm): 173', 'height(cm): 193', 'height(cm): 152', 'height(cm): 167', 'height(cm): 168', \n",
    "                        'height(cm): 177', 'height(cm): 165', 'height(cm): 179', 'height(cm): 190']}\n",
    "    \n",
    "    # Create sample IDs (columns) equal to the maximum number of samples\n",
    "    max_samples = max(len(values) for values in sample_chars.values())\n",
    "    sample_ids = [f\"Sample_{i+1}\" for i in range(max_samples)]\n",
    "    \n",
    "    # Create a DataFrame with NaN values\n",
    "    clinical_data = pd.DataFrame(index=range(max(sample_chars.keys()) + 1), columns=sample_ids)\n",
    "    \n",
    "    # Fill the DataFrame with sample characteristics data\n",
    "    for row_idx, row_values in sample_chars.items():\n",
    "        for col_idx, value in enumerate(row_values):\n",
    "            if col_idx < len(sample_ids):\n",
    "                clinical_data.iloc[row_idx, col_idx] = value\n",
    "    \n",
    "    # Extract clinical features\n",
    "    selected_clinical_df = geo_select_clinical_features(\n",
    "        clinical_df=clinical_data,\n",
    "        trait=trait,\n",
    "        trait_row=trait_row,\n",
    "        convert_trait=convert_trait,\n",
    "        age_row=age_row,\n",
    "        convert_age=convert_age,\n",
    "        gender_row=gender_row,\n",
    "        convert_gender=convert_gender\n",
    "    )\n",
    "    \n",
    "    # Preview the dataframe\n",
    "    preview = preview_df(selected_clinical_df)\n",
    "    print(\"Clinical Data Preview:\")\n",
    "    print(pd.DataFrame(preview))\n",
    "    \n",
    "    # Save the processed clinical data\n",
    "    os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "    selected_clinical_df.to_csv(out_clinical_data_file, index=False)\n",
    "    print(f\"Clinical data saved to {out_clinical_data_file}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "28193d69",
   "metadata": {},
   "source": [
    "### Step 3: Dataset Analysis and Clinical Feature Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "21d5dad6",
   "metadata": {},
   "outputs": [],
   "source": [
    "```python\n",
    "# Analyzing dataset files and structure\n",
    "import os\n",
    "\n",
    "# List files in the cohort directory to understand what's available\n",
    "print(\"Files in cohort directory:\")\n",
    "try:\n",
    "    cohort_files = os.listdir(in_cohort_dir)\n",
    "    for file in cohort_files:\n",
    "        print(f\"- {file}\")\n",
    "except Exception as e:\n",
    "    print(f\"Error accessing directory: {e}\")\n",
    "\n",
    "# Check for common GEO file patterns\n",
    "soft_file = None\n",
    "matrix_file = None\n",
    "family_file = None\n",
    "for file in os.listdir(in_cohort_dir) if os.path.exists(in_cohort_dir) else []:\n",
    "    if file.endswith(\".soft\") or file.endswith(\".soft.gz\"):\n",
    "        soft_file = os.path.join(in_cohort_dir, file)\n",
    "    elif file.endswith(\"_family.soft.gz\") or file.endswith(\"_family.soft\"):\n",
    "        family_file = os.path.join(in_cohort_dir, file)\n",
    "    elif file.endswith(\"_matrix.txt\") or file.endswith(\"_matrix.txt.gz\"):\n",
    "        matrix_file = os.path.join(in_cohort_dir, file)\n",
    "\n",
    "print(f\"SOFT file: {soft_file}\")\n",
    "print(f\"Family file: {family_file}\")\n",
    "print(f\"Matrix file: {matrix_file}\")\n",
    "\n",
    "# Load the sample characteristics from the appropriate file\n",
    "if soft_file and os.path.exists(soft_file):\n",
    "    # Parse SOFT file to get sample characteristics\n",
    "    with open(soft_file, 'r') as f:\n",
    "        lines = f.readlines()\n",
    "    \n",
    "    # Extract sample characteristics\n",
    "    sample_chars = []\n",
    "    current_section = None\n",
    "    for line in lines:\n",
    "        if line.startswith(\"!Sample_\"):\n",
    "            key = line.split(\"=\")[0].strip().replace(\"!Sample_\", \"\")\n",
    "            value = line.split(\"=\")[1].strip() if \"=\" in line else \"\"\n",
    "            if key == \"table_begin\":\n",
    "                current_section = \"sample_table\"\n",
    "                sample_chars = []\n",
    "            elif key == \"table_end\":\n",
    "                current_section = None\n",
    "            elif current_section == \"sample_table\":\n",
    "                sample_chars.append(line.strip())\n",
    "            \n",
    "    # Create DataFrame from sample characteristics\n",
    "    if sample_chars:\n",
    "        import io\n",
    "        sample_table = io.StringIO(\"\\n\".join(sample_chars))\n",
    "        clinical_data = pd.read_csv(sample_table, sep=\"\\t\")\n",
    "    else:\n",
    "        clinical_data = pd.DataFrame()\n",
    "else:\n",
    "    # Try to find sample characteristics in other files\n",
    "    sample_chars_file = None\n",
    "    for file in os.listdir(in_cohort_dir) if os.path.exists(in_cohort_dir) else []:\n",
    "        if \"sample\" in file.lower() and \"char\" in file.lower():\n",
    "            sample_chars_file = os.path.join(in_cohort_dir, file)\n",
    "            break\n",
    "    \n",
    "    if sample_chars_file and os.path.exists(sample_chars_file):\n",
    "        clinical_data = pd.read_csv(sample_chars_file)\n",
    "    else:\n",
    "        # Last resort - look for any CSV file that might contain clinical data\n",
    "        csv_files = [f for f in os.listdir(in_cohort_dir) if f.endswith('.csv')] if os.path.exists(in_cohort_dir) else []\n",
    "        if csv_files:\n",
    "            clinical_data = pd.read_csv(os.path.join(in_cohort_dir, csv_files[0]))\n",
    "        else:\n",
    "            clinical_data = pd.DataFrame()\n",
    "\n",
    "# Display sample characteristics to make informed decisions\n",
    "print(\"\\nSample characteristics data shape:\", clinical_data.shape)\n",
    "print(\"Sample characteristics preview:\")\n",
    "print(clinical_data.head())\n",
    "\n",
    "# Get unique values for each row to identify relevant variables\n",
    "unique_values = {}\n",
    "for i in range(len(clinical_data)):\n",
    "    if i < clinical_data.shape[0]:\n",
    "        values = set(clinical_data.iloc[i, 1:].dropna().unique())\n",
    "        unique_values[i] = values\n",
    "        print(f\"Row {i}: {values}\")\n",
    "\n",
    "# 1. Gene Expression Data Availability\n",
    "# Assuming gene expression data is available (can be overridden if evidence suggests otherwise)\n",
    "is_gene_available = True\n",
    "\n",
    "# 2. Variable Availability and Data Type Conversion\n",
    "# 2.1 Identify rows for trait, age, and gender\n",
    "trait_row = None\n",
    "age_row = None\n",
    "gender_row = None\n",
    "\n",
    "# Check each row to find trait, age, and gender information\n",
    "for i in unique_values:\n",
    "    values_str = ' '.join([str(v) for v in unique_values[i]])\n",
    "    row_data_str = ' '.join([str(x) for x in clinical_data.iloc[i, :].values if pd.notna(x)])\n",
    "    \n",
    "    # Looking for height information\n",
    "    if any(h in row_data_str.lower() for h in ['height', 'cm', 'meter', 'tall', 'stature']):\n",
    "        trait_row = i\n",
    "        print(f\"Found Height information in row {i}\")\n",
    "    \n",
    "    # Looking for age information\n",
    "    if any(a in row_data_str.lower() for a in ['age', 'year', 'yrs', 'yo']):\n",
    "        age_row = i\n",
    "        print(f\"Found Age information in row {i}\")\n",
    "    \n",
    "    # Looking for gender information\n",
    "    if any(g in row_data_str.lower() for g in ['gender', 'sex', 'male', 'female']):\n",
    "        gender_row = i\n",
    "        print(f\"Found Gender information in row {i}\")\n",
    "\n",
    "# 2.2 Define conversion functions for each variable\n",
    "def extract_value(s):\n",
    "    \"\"\"Extract value after colon if present.\"\"\"\n",
    "    if isinstance(s, str) and ':' in s:\n",
    "        return s.split(':', 1)[1].strip()\n",
    "    return s\n",
    "\n",
    "def convert_trait(value):\n",
    "    \"\"\"Convert height value to float (continuous).\"\"\"\n",
    "    if pd.isna(value):\n",
    "        return None\n",
    "    \n",
    "    value = extract_value(value)\n",
    "    if isinstance(value, str):\n",
    "        # Extract numeric part from the string\n",
    "        try:\n",
    "            import re\n",
    "            nums = re.findall(r'\\d+\\.?\\d*', value)\n",
    "            if nums:\n",
    "                return float(nums[0])\n",
    "        except:\n",
    "            pass\n",
    "    \n",
    "    try:\n",
    "        return float(value)\n",
    "    except:\n",
    "        return None\n",
    "\n",
    "def convert_age(value):\n",
    "    \"\"\"Convert age value to float (continuous).\"\"\"\n",
    "    if pd.isna(value):\n",
    "        return None\n",
    "    \n",
    "    value = extract_value(value)\n",
    "    if isinstance(value, str):\n",
    "        # Extract numeric part from the string\n",
    "        try:\n",
    "            import re\n",
    "            nums = re.findall(r'\\d+\\.?\\d*', value)\n",
    "            if nums:\n",
    "                return float(nums[0])\n",
    "        except:\n",
    "            pass\n",
    "    \n",
    "    try:\n",
    "        return float(value)\n",
    "    except:\n",
    "        return None\n",
    "\n",
    "def convert_gender(value):\n",
    "    \"\"\"Convert gender to binary (0 for female, 1 for male).\"\"\"\n",
    "    if pd.isna(value):\n",
    "        return None\n",
    "    \n",
    "    value = extract_value(value)\n",
    "    if isinstance(value, str):\n",
    "        value = value.lower()\n",
    "        if any(f in value for f in ['female', 'f', 'woman', 'girl']):\n",
    "            return 0\n",
    "        elif any(m in value for m in ['male', 'm', 'man', 'boy']):\n",
    "            return 1\n",
    "    return None\n",
    "\n",
    "# 3. Save metadata about data availability\n",
    "is_trait_available = trait_row is not None\n",
    "validate_and_save_cohort_info(\n",
    "    is_final=False, \n",
    "    cohort=cohort, \n",
    "    info_path=json_path, \n",
    "    is_gene_available=is_gene_available,\n",
    "    is_trait_available=is_trait_available\n",
    ")\n",
    "\n",
    "# 4. Extract and save clinical features if trait data is available\n",
    "if trait_row is not None:\n",
    "    # Extract clinical features\n",
    "    selected_clinical_df = geo_select_clinical_features(\n",
    "        clinical_df=clinical_data,\n",
    "        trait=trait,\n",
    "        trait_row=trait_row,\n",
    "        convert_trait=convert_trait,\n",
    "        age_row=age_row,\n",
    "        convert_age=convert\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "14d7a3ed",
   "metadata": {},
   "source": [
    "### Step 4: Gene Data Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "eb4606d2",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. Get the file paths for the SOFT file and matrix file\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. First, let's examine the structure of the matrix file to understand its format\n",
    "import gzip\n",
    "\n",
    "# Peek at the first few lines of the file to understand its structure\n",
    "with gzip.open(matrix_file, 'rt') as file:\n",
    "    # Read first 100 lines to find the header structure\n",
    "    for i, line in enumerate(file):\n",
    "        if '!series_matrix_table_begin' in line:\n",
    "            print(f\"Found data marker at line {i}\")\n",
    "            # Read the next line which should be the header\n",
    "            header_line = next(file)\n",
    "            print(f\"Header line: {header_line.strip()}\")\n",
    "            # And the first data line\n",
    "            first_data_line = next(file)\n",
    "            print(f\"First data line: {first_data_line.strip()}\")\n",
    "            break\n",
    "        if i > 100:  # Limit search to first 100 lines\n",
    "            print(\"Matrix table marker not found in first 100 lines\")\n",
    "            break\n",
    "\n",
    "# 3. Now try to get the genetic data with better error handling\n",
    "try:\n",
    "    gene_data = get_genetic_data(matrix_file)\n",
    "    print(gene_data.index[:20])\n",
    "except KeyError as e:\n",
    "    print(f\"KeyError: {e}\")\n",
    "    \n",
    "    # Alternative approach: manually extract the data\n",
    "    print(\"\\nTrying alternative approach to read the gene data:\")\n",
    "    with gzip.open(matrix_file, 'rt') as file:\n",
    "        # Find the start of the data\n",
    "        for line in file:\n",
    "            if '!series_matrix_table_begin' in line:\n",
    "                break\n",
    "                \n",
    "        # Read the headers and data\n",
    "        import pandas as pd\n",
    "        df = pd.read_csv(file, sep='\\t', index_col=0)\n",
    "        print(f\"Column names: {df.columns[:5]}\")\n",
    "        print(f\"First 20 row IDs: {df.index[:20]}\")\n",
    "        gene_data = df\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "ee780b33",
   "metadata": {},
   "source": [
    "### Step 5: Gene Identifier Review"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "a2bbe313",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Examining the gene identifiers in the dataset\n",
    "# The identifiers follow the format \"ENSG00000000003_at\", \"ENSG00000000005_at\", etc.\n",
    "# ENSG identifiers are Ensembl gene IDs, not standard human gene symbols\n",
    "# They need to be mapped to official gene symbols for better interpretability\n",
    "\n",
    "requires_gene_mapping = True\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "0e4e7ce4",
   "metadata": {},
   "source": [
    "### Step 6: Gene Annotation"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "b5dd22c7",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. Let's first examine the structure of the SOFT file before trying to parse it\n",
    "import gzip\n",
    "\n",
    "# Look at the first few lines of the SOFT file to understand its structure\n",
    "print(\"Examining SOFT file structure:\")\n",
    "try:\n",
    "    with gzip.open(soft_file, 'rt') as file:\n",
    "        # Read first 20 lines to understand the file structure\n",
    "        for i, line in enumerate(file):\n",
    "            if i < 20:\n",
    "                print(f\"Line {i}: {line.strip()}\")\n",
    "            else:\n",
    "                break\n",
    "except Exception as e:\n",
    "    print(f\"Error reading SOFT file: {e}\")\n",
    "\n",
    "# 2. Now let's try a more robust approach to extract the gene annotation\n",
    "# Instead of using the library function which failed, we'll implement a custom approach\n",
    "try:\n",
    "    # First, look for the platform section which contains gene annotation\n",
    "    platform_data = []\n",
    "    with gzip.open(soft_file, 'rt') as file:\n",
    "        in_platform_section = False\n",
    "        for line in file:\n",
    "            if line.startswith('^PLATFORM'):\n",
    "                in_platform_section = True\n",
    "                continue\n",
    "            if in_platform_section and line.startswith('!platform_table_begin'):\n",
    "                # Next line should be the header\n",
    "                header = next(file).strip()\n",
    "                platform_data.append(header)\n",
    "                # Read until the end of the platform table\n",
    "                for table_line in file:\n",
    "                    if table_line.startswith('!platform_table_end'):\n",
    "                        break\n",
    "                    platform_data.append(table_line.strip())\n",
    "                break\n",
    "    \n",
    "    # If we found platform data, convert it to a DataFrame\n",
    "    if platform_data:\n",
    "        import pandas as pd\n",
    "        import io\n",
    "        platform_text = '\\n'.join(platform_data)\n",
    "        gene_annotation = pd.read_csv(io.StringIO(platform_text), delimiter='\\t', \n",
    "                                      low_memory=False, on_bad_lines='skip')\n",
    "        print(\"\\nGene annotation preview:\")\n",
    "        print(preview_df(gene_annotation))\n",
    "    else:\n",
    "        print(\"Could not find platform table in SOFT file\")\n",
    "        \n",
    "        # Try an alternative approach - extract mapping from other sections\n",
    "        with gzip.open(soft_file, 'rt') as file:\n",
    "            for line in file:\n",
    "                if 'ANNOTATION information' in line or 'annotation information' in line:\n",
    "                    print(f\"Found annotation information: {line.strip()}\")\n",
    "                if line.startswith('!Platform_title') or line.startswith('!platform_title'):\n",
    "                    print(f\"Platform title: {line.strip()}\")\n",
    "            \n",
    "except Exception as e:\n",
    "    print(f\"Error processing gene annotation: {e}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "ea803bcd",
   "metadata": {},
   "source": [
    "### Step 7: Gene Identifier Mapping"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "71f22fa6",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. After analyzing the gene identifiers and gene annotation data:\n",
    "# - In gene_data, the IDs are like \"ENSG00000000003_at\" \n",
    "# - In gene_annotation, the matching column is \"ID\" which has the same format\n",
    "# - The gene symbols are stored in the \"ORF\" column\n",
    "\n",
    "# 2. Create gene mapping dataframe with the two relevant columns\n",
    "gene_mapping = gene_annotation[['ID', 'ORF']]\n",
    "gene_mapping = gene_mapping.rename(columns={'ORF': 'Gene'})\n",
    "gene_mapping = gene_mapping.dropna()\n",
    "\n",
    "# 3. Apply gene mapping to convert probe-level measurements to gene expression data\n",
    "# This handles the many-to-many relationship as specified\n",
    "gene_data = apply_gene_mapping(gene_data, gene_mapping)\n",
    "\n",
    "# Preview the gene expression data after mapping\n",
    "print(\"\\nGene expression data preview after mapping:\")\n",
    "print(gene_data.shape)\n",
    "print(gene_data.index[:10])  # Show first 10 gene symbols"
   ]
  }
 ],
 "metadata": {},
 "nbformat": 4,
 "nbformat_minor": 5
}