File size: 19,434 Bytes
6bc7e45 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 |
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"id": "d8bc88bd",
"metadata": {},
"outputs": [],
"source": [
"import sys\n",
"import os\n",
"sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
"\n",
"# Path Configuration\n",
"from tools.preprocess import *\n",
"\n",
"# Processing context\n",
"trait = \"Height\"\n",
"cohort = \"GSE97475\"\n",
"\n",
"# Input paths\n",
"in_trait_dir = \"../../input/GEO/Height\"\n",
"in_cohort_dir = \"../../input/GEO/Height/GSE97475\"\n",
"\n",
"# Output paths\n",
"out_data_file = \"../../output/preprocess/Height/GSE97475.csv\"\n",
"out_gene_data_file = \"../../output/preprocess/Height/gene_data/GSE97475.csv\"\n",
"out_clinical_data_file = \"../../output/preprocess/Height/clinical_data/GSE97475.csv\"\n",
"json_path = \"../../output/preprocess/Height/cohort_info.json\"\n"
]
},
{
"cell_type": "markdown",
"id": "8b3d32da",
"metadata": {},
"source": [
"### Step 1: Initial Data Loading"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "74cb49cd",
"metadata": {},
"outputs": [],
"source": [
"from tools.preprocess import *\n",
"# 1. Identify the paths to the SOFT file and the matrix file\n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"\n",
"# 2. Read the matrix file to obtain background information and sample characteristics data\n",
"background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
"clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
"background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
"\n",
"# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
"sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
"\n",
"# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
"print(\"Background Information:\")\n",
"print(background_info)\n",
"print(\"Sample Characteristics Dictionary:\")\n",
"print(sample_characteristics_dict)\n"
]
},
{
"cell_type": "markdown",
"id": "5a025d18",
"metadata": {},
"source": [
"### Step 2: Dataset Analysis and Clinical Feature Extraction"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "18d167cc",
"metadata": {},
"outputs": [],
"source": [
"# 1. Gene Expression Data Availability\n",
"# Based on the series title and summary, this appears to be a gene expression study of healthy hepatitis B vaccine recipients.\n",
"# The summary mentions \"transcriptomic\" data collection, which suggests gene expression data is available.\n",
"is_gene_available = True\n",
"\n",
"# 2. Variable Availability and Data Type Conversion\n",
"# 2.1 Data Availability\n",
"\n",
"# Height (trait)\n",
"# Looking at 'subjects.demographics.height: NA' - all values are NA, so height data is not available\n",
"trait_row = None # Setting to None since all values appear to be NA\n",
"\n",
"# Age Data\n",
"# Key 81 contains age information with multiple unique values\n",
"age_row = 81\n",
"\n",
"# Gender Data\n",
"# Key 118 contains gender information with two values: Male and Female\n",
"gender_row = 118\n",
"\n",
"# 2.2 Data Type Conversion\n",
"\n",
"def convert_trait(value):\n",
" \"\"\"Convert height data to a float value in cm.\"\"\"\n",
" if not value or value == 'NA':\n",
" return None\n",
" # Extract the value after the colon if present\n",
" if ':' in value:\n",
" value = value.split(':', 1)[1].strip()\n",
" # Try to convert to float, assuming height is in cm\n",
" try:\n",
" return float(value)\n",
" except ValueError:\n",
" return None\n",
"\n",
"def convert_age(value):\n",
" \"\"\"Convert age data to integer.\"\"\"\n",
" if not value or value == 'NA':\n",
" return None\n",
" if ':' in value:\n",
" value = value.split(':', 1)[1].strip()\n",
" try:\n",
" return int(value)\n",
" except ValueError:\n",
" return None\n",
"\n",
"def convert_gender(value):\n",
" \"\"\"Convert gender data to binary (0 for Female, 1 for Male).\"\"\"\n",
" if not value or value == 'NA':\n",
" return None\n",
" if ':' in value:\n",
" value = value.split(':', 1)[1].strip()\n",
" if value.lower() == 'female':\n",
" return 0\n",
" elif value.lower() == 'male':\n",
" return 1\n",
" return None\n",
"\n",
"# 3. Save Metadata\n",
"# Determine trait availability based on whether trait_row is None\n",
"is_trait_available = trait_row is not None\n",
"\n",
"# Initial filtering on usability and save metadata\n",
"validate_and_save_cohort_info(\n",
" is_final=False,\n",
" cohort=cohort,\n",
" info_path=json_path,\n",
" is_gene_available=is_gene_available,\n",
" is_trait_available=is_trait_available\n",
")\n",
"\n",
"# 4. Clinical Feature Extraction\n",
"# Only proceed if trait_row is not None and the clinical data file exists\n",
"import os\n",
"\n",
"if trait_row is not None:\n",
" clinical_data_path = f\"{in_cohort_dir}/clinical_data.csv\"\n",
" if os.path.exists(clinical_data_path):\n",
" # Load the clinical data\n",
" clinical_data = pd.read_csv(clinical_data_path)\n",
" \n",
" # Extract clinical features using the library function\n",
" selected_clinical = geo_select_clinical_features(\n",
" clinical_df=clinical_data,\n",
" trait=trait,\n",
" trait_row=trait_row,\n",
" convert_trait=convert_trait,\n",
" age_row=age_row,\n",
" convert_age=convert_age,\n",
" gender_row=gender_row,\n",
" convert_gender=convert_gender\n",
" )\n",
" \n",
" # Preview the output\n",
" preview = preview_df(selected_clinical)\n",
" print(\"Preview of selected clinical features:\")\n",
" print(preview)\n",
" \n",
" # Save the selected clinical features\n",
" selected_clinical.to_csv(out_clinical_data_file, index=False)\n",
" print(f\"Clinical features saved to {out_clinical_data_file}\")\n",
" else:\n",
" print(f\"Clinical data file not found at {clinical_data_path}\")\n",
" print(\"Skipping clinical feature extraction.\")\n",
"else:\n",
" print(f\"Trait data ({trait}) is not available in this dataset.\")\n",
" print(\"Skipping clinical feature extraction.\")\n"
]
},
{
"cell_type": "markdown",
"id": "6d60c63c",
"metadata": {},
"source": [
"### Step 3: Gene Data Extraction"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "110de7b4",
"metadata": {},
"outputs": [],
"source": [
"# 1. Get the file paths for the SOFT file and matrix file\n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"\n",
"# 2. First, let's examine the structure of the matrix file to understand its format\n",
"import gzip\n",
"\n",
"# Peek at the first few lines of the file to understand its structure\n",
"with gzip.open(matrix_file, 'rt') as file:\n",
" # Read first 100 lines to find the header structure\n",
" for i, line in enumerate(file):\n",
" if '!series_matrix_table_begin' in line:\n",
" print(f\"Found data marker at line {i}\")\n",
" # Read the next line which should be the header\n",
" header_line = next(file)\n",
" print(f\"Header line: {header_line.strip()}\")\n",
" # And the first data line\n",
" first_data_line = next(file)\n",
" print(f\"First data line: {first_data_line.strip()}\")\n",
" break\n",
" if i > 100: # Limit search to first 100 lines\n",
" print(\"Matrix table marker not found in first 100 lines\")\n",
" break\n",
"\n",
"# 3. Now try to get the genetic data with better error handling\n",
"try:\n",
" gene_data = get_genetic_data(matrix_file)\n",
" print(gene_data.index[:20])\n",
"except KeyError as e:\n",
" print(f\"KeyError: {e}\")\n",
" \n",
" # Alternative approach: manually extract the data\n",
" print(\"\\nTrying alternative approach to read the gene data:\")\n",
" with gzip.open(matrix_file, 'rt') as file:\n",
" # Find the start of the data\n",
" for line in file:\n",
" if '!series_matrix_table_begin' in line:\n",
" break\n",
" \n",
" # Read the headers and data\n",
" import pandas as pd\n",
" df = pd.read_csv(file, sep='\\t', index_col=0)\n",
" print(f\"Column names: {df.columns[:5]}\")\n",
" print(f\"First 20 row IDs: {df.index[:20]}\")\n",
" gene_data = df\n"
]
},
{
"cell_type": "markdown",
"id": "4cce52d5",
"metadata": {},
"source": [
"### Step 4: Gene Identifier Review"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "ada39933",
"metadata": {},
"outputs": [],
"source": [
"# Let's analyze the gene identifiers\n",
"from typing import List\n",
"\n",
"def is_human_gene_symbol(gene_ids: List[str]) -> bool:\n",
" \"\"\"\n",
" Determine if a list of identifiers are human gene symbols.\n",
" \n",
" Human gene symbols are typically:\n",
" - Short (usually 1-8 characters)\n",
" - Uppercase letters\n",
" - May contain numbers, usually at the end\n",
" - Sometimes include hyphens\n",
" \n",
" Returns True if identifiers appear to be human gene symbols.\n",
" \"\"\"\n",
" # Check a sample of genes that are clearly human gene symbols\n",
" known_human_genes = {'A1BG', 'AAAS', 'AACS', 'AAMP', 'AARS'}\n",
" \n",
" # Count how many match our known set\n",
" matches = sum(1 for gene in gene_ids if gene in known_human_genes)\n",
" \n",
" # If we have multiple matches to known gene symbols, these are likely human gene symbols\n",
" if matches >= 3:\n",
" return True\n",
" \n",
" return False\n",
"\n",
"# Check the sample gene IDs shown in the output\n",
"sample_genes = ['A1BG', 'A26C3', 'A2LD1', 'A4GNT', 'AAAS', 'AACS', 'AACSL', 'AADACL1',\n",
" 'AADAT', 'AAGAB', 'AAK1', 'AAMP', 'AARS', 'AARS2', 'AARSD1', 'AASDH',\n",
" 'AASDHPPT', 'AASS', 'AATF', 'AATK']\n",
"\n",
"requires_gene_mapping = not is_human_gene_symbol(sample_genes)\n",
"print(f\"requires_gene_mapping = {requires_gene_mapping}\")\n"
]
},
{
"cell_type": "markdown",
"id": "ce3c3202",
"metadata": {},
"source": [
"### Step 5: Data Normalization and Linking"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "8cf942a1",
"metadata": {},
"outputs": [],
"source": [
"# 1. Let's load the gene expression data\n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"\n",
"# Normalize gene symbols in the gene expression data\n",
"# The gene_data object from Step 3 already contains our gene expression data\n",
"# Let's first load it again to make sure we have the correct data\n",
"gene_data = get_genetic_data(matrix_file)\n",
"\n",
"# Normalize gene symbols using the NCBI Gene database information\n",
"normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n",
"print(f\"Gene data shape after normalization: {normalized_gene_data.shape}\")\n",
"\n",
"# Save the normalized gene data to the output file\n",
"os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
"normalized_gene_data.to_csv(out_gene_data_file)\n",
"print(f\"Normalized gene data saved to {out_gene_data_file}\")\n",
"\n",
"# 2. Attempt to link clinical and genetic data\n",
"# In Step 2, we determined that Height data is not available in this dataset (trait_row = None)\n",
"# Therefore, we need to indicate that trait data is not available\n",
"\n",
"# Create a minimal clinical dataframe with the trait column (containing NaNs)\n",
"sample_ids = gene_data.columns\n",
"# Create a DataFrame with sample IDs and a placeholder Height column\n",
"minimal_clinical_df = pd.DataFrame(index=sample_ids)\n",
"minimal_clinical_df[trait] = np.nan # Add the trait column with NaN values\n",
"minimal_clinical_df.index.name = 'Sample'\n",
"\n",
"# Save this minimal clinical data for reference\n",
"os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
"minimal_clinical_df.to_csv(out_clinical_data_file)\n",
"print(f\"Minimal clinical data with placeholder {trait} column saved to {out_clinical_data_file}\")\n",
"\n",
"# Create a linked dataset \n",
"linked_data = pd.concat([minimal_clinical_df, normalized_gene_data.T], axis=1)\n",
"linked_data.index.name = 'Sample'\n",
"print(f\"Linked data shape: {linked_data.shape}\")\n",
"\n",
"# 5. Validate and save cohort information\n",
"# trait_row was None in Step 2, so we know Height data is not available\n",
"is_gene_available = len(normalized_gene_data) > 0\n",
"is_trait_available = False # Height data is not available\n",
"\n",
"note = \"Dataset contains gene expression data but no Height measurements. This dataset is not usable for studying Height associations.\"\n",
"\n",
"# For datasets without trait data, set is_biased to False\n",
"# This indicates the dataset is not usable due to missing trait data, not due to bias\n",
"is_biased = False\n",
"\n",
"# Final validation\n",
"is_usable = validate_and_save_cohort_info(\n",
" is_final=True, \n",
" cohort=cohort, \n",
" info_path=json_path, \n",
" is_gene_available=is_gene_available, \n",
" is_trait_available=is_trait_available, \n",
" is_biased=is_biased, # Explicitly set to False instead of None\n",
" df=linked_data,\n",
" note=note\n",
")\n",
"\n",
"# Since there is no trait data, the dataset is not usable for our association study\n",
"print(\"Dataset does not contain Height data and cannot be used for association studies.\")\n"
]
},
{
"cell_type": "markdown",
"id": "6b286368",
"metadata": {},
"source": [
"### Step 6: Data Normalization and Linking"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "97bcc2f7",
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"import os\n",
"\n",
"# 1. Let's load the gene expression data\n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"\n",
"# Extract gene expression data\n",
"gene_data = get_genetic_data(matrix_file)\n",
"\n",
"# Normalize gene symbols using the NCBI Gene database information\n",
"normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n",
"print(f\"Gene data shape after normalization: {normalized_gene_data.shape}\")\n",
"\n",
"# Save the normalized gene data to the output file\n",
"os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
"normalized_gene_data.to_csv(out_gene_data_file)\n",
"print(f\"Normalized gene data saved to {out_gene_data_file}\")\n",
"\n",
"# 2. Link clinical and genetic data\n",
"# In Step 2, we determined that Height data is not available in this dataset (trait_row = None)\n",
"# Create a minimal clinical dataframe with the trait column (containing NaNs)\n",
"sample_ids = normalized_gene_data.columns\n",
"minimal_clinical_df = pd.DataFrame(index=sample_ids)\n",
"minimal_clinical_df[trait] = np.nan # Add the trait column with NaN values\n",
"\n",
"# If we have age and gender data from Step 2, add those columns\n",
"if age_row is not None:\n",
" minimal_clinical_df['Age'] = get_feature_data(clinical_data, age_row, 'Age', convert_age).iloc[0]\n",
"\n",
"if gender_row is not None:\n",
" minimal_clinical_df['Gender'] = get_feature_data(clinical_data, gender_row, 'Gender', convert_gender).iloc[0]\n",
"\n",
"minimal_clinical_df.index.name = 'Sample'\n",
"\n",
"# Save this minimal clinical data for reference\n",
"os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
"minimal_clinical_df.to_csv(out_clinical_data_file)\n",
"print(f\"Clinical data saved to {out_clinical_data_file}\")\n",
"\n",
"# Create a linked dataset \n",
"linked_data = pd.concat([minimal_clinical_df, normalized_gene_data.T], axis=1)\n",
"linked_data.index.name = 'Sample'\n",
"print(f\"Linked data shape: {linked_data.shape}\")\n",
"\n",
"# We would normally handle missing values here, but since all trait values are missing,\n",
"# the dataset will be empty after removing samples with missing trait values\n",
"# Therefore, we'll skip that step\n",
"\n",
"# 4 & 5. Validate and save cohort information\n",
"# Since trait_row was None in Step 2, we know Height data is not available\n",
"is_gene_available = len(normalized_gene_data) > 0\n",
"is_trait_available = False # Height data is not available\n",
"\n",
"note = \"Dataset contains gene expression data but no Height measurements. This dataset is not usable for studying Height associations.\"\n",
"\n",
"# For datasets without trait data, we set is_biased to False\n",
"# This indicates the dataset is not usable due to missing trait data, not due to bias\n",
"is_biased = False\n",
"\n",
"# Final validation\n",
"is_usable = validate_and_save_cohort_info(\n",
" is_final=True, \n",
" cohort=cohort, \n",
" info_path=json_path, \n",
" is_gene_available=is_gene_available, \n",
" is_trait_available=is_trait_available, \n",
" is_biased=is_biased,\n",
" df=linked_data,\n",
" note=note\n",
")\n",
"\n",
"# 6. Since there is no trait data, the dataset is not usable for our association study\n",
"# So we should not save it to out_data_file\n",
"print(f\"Dataset usability: {is_usable}\")\n",
"if is_usable:\n",
" os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
" linked_data.to_csv(out_data_file)\n",
" print(f\"Linked data saved to {out_data_file}\")\n",
"else:\n",
" print(\"Dataset does not contain Height data and cannot be used for association studies.\")"
]
}
],
"metadata": {},
"nbformat": 4,
"nbformat_minor": 5
}
|