File size: 19,434 Bytes
6bc7e45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "d8bc88bd",
   "metadata": {},
   "outputs": [],
   "source": [
    "import sys\n",
    "import os\n",
    "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
    "\n",
    "# Path Configuration\n",
    "from tools.preprocess import *\n",
    "\n",
    "# Processing context\n",
    "trait = \"Height\"\n",
    "cohort = \"GSE97475\"\n",
    "\n",
    "# Input paths\n",
    "in_trait_dir = \"../../input/GEO/Height\"\n",
    "in_cohort_dir = \"../../input/GEO/Height/GSE97475\"\n",
    "\n",
    "# Output paths\n",
    "out_data_file = \"../../output/preprocess/Height/GSE97475.csv\"\n",
    "out_gene_data_file = \"../../output/preprocess/Height/gene_data/GSE97475.csv\"\n",
    "out_clinical_data_file = \"../../output/preprocess/Height/clinical_data/GSE97475.csv\"\n",
    "json_path = \"../../output/preprocess/Height/cohort_info.json\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "8b3d32da",
   "metadata": {},
   "source": [
    "### Step 1: Initial Data Loading"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "74cb49cd",
   "metadata": {},
   "outputs": [],
   "source": [
    "from tools.preprocess import *\n",
    "# 1. Identify the paths to the SOFT file and the matrix file\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. Read the matrix file to obtain background information and sample characteristics data\n",
    "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
    "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
    "background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
    "\n",
    "# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
    "sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
    "\n",
    "# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
    "print(\"Background Information:\")\n",
    "print(background_info)\n",
    "print(\"Sample Characteristics Dictionary:\")\n",
    "print(sample_characteristics_dict)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "5a025d18",
   "metadata": {},
   "source": [
    "### Step 2: Dataset Analysis and Clinical Feature Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "18d167cc",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. Gene Expression Data Availability\n",
    "# Based on the series title and summary, this appears to be a gene expression study of healthy hepatitis B vaccine recipients.\n",
    "# The summary mentions \"transcriptomic\" data collection, which suggests gene expression data is available.\n",
    "is_gene_available = True\n",
    "\n",
    "# 2. Variable Availability and Data Type Conversion\n",
    "# 2.1 Data Availability\n",
    "\n",
    "# Height (trait)\n",
    "# Looking at 'subjects.demographics.height: NA' - all values are NA, so height data is not available\n",
    "trait_row = None  # Setting to None since all values appear to be NA\n",
    "\n",
    "# Age Data\n",
    "# Key 81 contains age information with multiple unique values\n",
    "age_row = 81\n",
    "\n",
    "# Gender Data\n",
    "# Key 118 contains gender information with two values: Male and Female\n",
    "gender_row = 118\n",
    "\n",
    "# 2.2 Data Type Conversion\n",
    "\n",
    "def convert_trait(value):\n",
    "    \"\"\"Convert height data to a float value in cm.\"\"\"\n",
    "    if not value or value == 'NA':\n",
    "        return None\n",
    "    # Extract the value after the colon if present\n",
    "    if ':' in value:\n",
    "        value = value.split(':', 1)[1].strip()\n",
    "    # Try to convert to float, assuming height is in cm\n",
    "    try:\n",
    "        return float(value)\n",
    "    except ValueError:\n",
    "        return None\n",
    "\n",
    "def convert_age(value):\n",
    "    \"\"\"Convert age data to integer.\"\"\"\n",
    "    if not value or value == 'NA':\n",
    "        return None\n",
    "    if ':' in value:\n",
    "        value = value.split(':', 1)[1].strip()\n",
    "    try:\n",
    "        return int(value)\n",
    "    except ValueError:\n",
    "        return None\n",
    "\n",
    "def convert_gender(value):\n",
    "    \"\"\"Convert gender data to binary (0 for Female, 1 for Male).\"\"\"\n",
    "    if not value or value == 'NA':\n",
    "        return None\n",
    "    if ':' in value:\n",
    "        value = value.split(':', 1)[1].strip()\n",
    "    if value.lower() == 'female':\n",
    "        return 0\n",
    "    elif value.lower() == 'male':\n",
    "        return 1\n",
    "    return None\n",
    "\n",
    "# 3. Save Metadata\n",
    "# Determine trait availability based on whether trait_row is None\n",
    "is_trait_available = trait_row is not None\n",
    "\n",
    "# Initial filtering on usability and save metadata\n",
    "validate_and_save_cohort_info(\n",
    "    is_final=False,\n",
    "    cohort=cohort,\n",
    "    info_path=json_path,\n",
    "    is_gene_available=is_gene_available,\n",
    "    is_trait_available=is_trait_available\n",
    ")\n",
    "\n",
    "# 4. Clinical Feature Extraction\n",
    "# Only proceed if trait_row is not None and the clinical data file exists\n",
    "import os\n",
    "\n",
    "if trait_row is not None:\n",
    "    clinical_data_path = f\"{in_cohort_dir}/clinical_data.csv\"\n",
    "    if os.path.exists(clinical_data_path):\n",
    "        # Load the clinical data\n",
    "        clinical_data = pd.read_csv(clinical_data_path)\n",
    "        \n",
    "        # Extract clinical features using the library function\n",
    "        selected_clinical = geo_select_clinical_features(\n",
    "            clinical_df=clinical_data,\n",
    "            trait=trait,\n",
    "            trait_row=trait_row,\n",
    "            convert_trait=convert_trait,\n",
    "            age_row=age_row,\n",
    "            convert_age=convert_age,\n",
    "            gender_row=gender_row,\n",
    "            convert_gender=convert_gender\n",
    "        )\n",
    "        \n",
    "        # Preview the output\n",
    "        preview = preview_df(selected_clinical)\n",
    "        print(\"Preview of selected clinical features:\")\n",
    "        print(preview)\n",
    "        \n",
    "        # Save the selected clinical features\n",
    "        selected_clinical.to_csv(out_clinical_data_file, index=False)\n",
    "        print(f\"Clinical features saved to {out_clinical_data_file}\")\n",
    "    else:\n",
    "        print(f\"Clinical data file not found at {clinical_data_path}\")\n",
    "        print(\"Skipping clinical feature extraction.\")\n",
    "else:\n",
    "    print(f\"Trait data ({trait}) is not available in this dataset.\")\n",
    "    print(\"Skipping clinical feature extraction.\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "6d60c63c",
   "metadata": {},
   "source": [
    "### Step 3: Gene Data Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "110de7b4",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. Get the file paths for the SOFT file and matrix file\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. First, let's examine the structure of the matrix file to understand its format\n",
    "import gzip\n",
    "\n",
    "# Peek at the first few lines of the file to understand its structure\n",
    "with gzip.open(matrix_file, 'rt') as file:\n",
    "    # Read first 100 lines to find the header structure\n",
    "    for i, line in enumerate(file):\n",
    "        if '!series_matrix_table_begin' in line:\n",
    "            print(f\"Found data marker at line {i}\")\n",
    "            # Read the next line which should be the header\n",
    "            header_line = next(file)\n",
    "            print(f\"Header line: {header_line.strip()}\")\n",
    "            # And the first data line\n",
    "            first_data_line = next(file)\n",
    "            print(f\"First data line: {first_data_line.strip()}\")\n",
    "            break\n",
    "        if i > 100:  # Limit search to first 100 lines\n",
    "            print(\"Matrix table marker not found in first 100 lines\")\n",
    "            break\n",
    "\n",
    "# 3. Now try to get the genetic data with better error handling\n",
    "try:\n",
    "    gene_data = get_genetic_data(matrix_file)\n",
    "    print(gene_data.index[:20])\n",
    "except KeyError as e:\n",
    "    print(f\"KeyError: {e}\")\n",
    "    \n",
    "    # Alternative approach: manually extract the data\n",
    "    print(\"\\nTrying alternative approach to read the gene data:\")\n",
    "    with gzip.open(matrix_file, 'rt') as file:\n",
    "        # Find the start of the data\n",
    "        for line in file:\n",
    "            if '!series_matrix_table_begin' in line:\n",
    "                break\n",
    "                \n",
    "        # Read the headers and data\n",
    "        import pandas as pd\n",
    "        df = pd.read_csv(file, sep='\\t', index_col=0)\n",
    "        print(f\"Column names: {df.columns[:5]}\")\n",
    "        print(f\"First 20 row IDs: {df.index[:20]}\")\n",
    "        gene_data = df\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "4cce52d5",
   "metadata": {},
   "source": [
    "### Step 4: Gene Identifier Review"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "ada39933",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Let's analyze the gene identifiers\n",
    "from typing import List\n",
    "\n",
    "def is_human_gene_symbol(gene_ids: List[str]) -> bool:\n",
    "    \"\"\"\n",
    "    Determine if a list of identifiers are human gene symbols.\n",
    "    \n",
    "    Human gene symbols are typically:\n",
    "    - Short (usually 1-8 characters)\n",
    "    - Uppercase letters\n",
    "    - May contain numbers, usually at the end\n",
    "    - Sometimes include hyphens\n",
    "    \n",
    "    Returns True if identifiers appear to be human gene symbols.\n",
    "    \"\"\"\n",
    "    # Check a sample of genes that are clearly human gene symbols\n",
    "    known_human_genes = {'A1BG', 'AAAS', 'AACS', 'AAMP', 'AARS'}\n",
    "    \n",
    "    # Count how many match our known set\n",
    "    matches = sum(1 for gene in gene_ids if gene in known_human_genes)\n",
    "    \n",
    "    # If we have multiple matches to known gene symbols, these are likely human gene symbols\n",
    "    if matches >= 3:\n",
    "        return True\n",
    "        \n",
    "    return False\n",
    "\n",
    "# Check the sample gene IDs shown in the output\n",
    "sample_genes = ['A1BG', 'A26C3', 'A2LD1', 'A4GNT', 'AAAS', 'AACS', 'AACSL', 'AADACL1',\n",
    "                'AADAT', 'AAGAB', 'AAK1', 'AAMP', 'AARS', 'AARS2', 'AARSD1', 'AASDH',\n",
    "                'AASDHPPT', 'AASS', 'AATF', 'AATK']\n",
    "\n",
    "requires_gene_mapping = not is_human_gene_symbol(sample_genes)\n",
    "print(f\"requires_gene_mapping = {requires_gene_mapping}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "ce3c3202",
   "metadata": {},
   "source": [
    "### Step 5: Data Normalization and Linking"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "8cf942a1",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. Let's load the gene expression data\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# Normalize gene symbols in the gene expression data\n",
    "# The gene_data object from Step 3 already contains our gene expression data\n",
    "# Let's first load it again to make sure we have the correct data\n",
    "gene_data = get_genetic_data(matrix_file)\n",
    "\n",
    "# Normalize gene symbols using the NCBI Gene database information\n",
    "normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n",
    "print(f\"Gene data shape after normalization: {normalized_gene_data.shape}\")\n",
    "\n",
    "# Save the normalized gene data to the output file\n",
    "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
    "normalized_gene_data.to_csv(out_gene_data_file)\n",
    "print(f\"Normalized gene data saved to {out_gene_data_file}\")\n",
    "\n",
    "# 2. Attempt to link clinical and genetic data\n",
    "# In Step 2, we determined that Height data is not available in this dataset (trait_row = None)\n",
    "# Therefore, we need to indicate that trait data is not available\n",
    "\n",
    "# Create a minimal clinical dataframe with the trait column (containing NaNs)\n",
    "sample_ids = gene_data.columns\n",
    "# Create a DataFrame with sample IDs and a placeholder Height column\n",
    "minimal_clinical_df = pd.DataFrame(index=sample_ids)\n",
    "minimal_clinical_df[trait] = np.nan  # Add the trait column with NaN values\n",
    "minimal_clinical_df.index.name = 'Sample'\n",
    "\n",
    "# Save this minimal clinical data for reference\n",
    "os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "minimal_clinical_df.to_csv(out_clinical_data_file)\n",
    "print(f\"Minimal clinical data with placeholder {trait} column saved to {out_clinical_data_file}\")\n",
    "\n",
    "# Create a linked dataset \n",
    "linked_data = pd.concat([minimal_clinical_df, normalized_gene_data.T], axis=1)\n",
    "linked_data.index.name = 'Sample'\n",
    "print(f\"Linked data shape: {linked_data.shape}\")\n",
    "\n",
    "# 5. Validate and save cohort information\n",
    "# trait_row was None in Step 2, so we know Height data is not available\n",
    "is_gene_available = len(normalized_gene_data) > 0\n",
    "is_trait_available = False  # Height data is not available\n",
    "\n",
    "note = \"Dataset contains gene expression data but no Height measurements. This dataset is not usable for studying Height associations.\"\n",
    "\n",
    "# For datasets without trait data, set is_biased to False\n",
    "# This indicates the dataset is not usable due to missing trait data, not due to bias\n",
    "is_biased = False\n",
    "\n",
    "# Final validation\n",
    "is_usable = validate_and_save_cohort_info(\n",
    "    is_final=True, \n",
    "    cohort=cohort, \n",
    "    info_path=json_path, \n",
    "    is_gene_available=is_gene_available, \n",
    "    is_trait_available=is_trait_available, \n",
    "    is_biased=is_biased,  # Explicitly set to False instead of None\n",
    "    df=linked_data,\n",
    "    note=note\n",
    ")\n",
    "\n",
    "# Since there is no trait data, the dataset is not usable for our association study\n",
    "print(\"Dataset does not contain Height data and cannot be used for association studies.\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "6b286368",
   "metadata": {},
   "source": [
    "### Step 6: Data Normalization and Linking"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "97bcc2f7",
   "metadata": {},
   "outputs": [],
   "source": [
    "import numpy as np\n",
    "import os\n",
    "\n",
    "# 1. Let's load the gene expression data\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# Extract gene expression data\n",
    "gene_data = get_genetic_data(matrix_file)\n",
    "\n",
    "# Normalize gene symbols using the NCBI Gene database information\n",
    "normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n",
    "print(f\"Gene data shape after normalization: {normalized_gene_data.shape}\")\n",
    "\n",
    "# Save the normalized gene data to the output file\n",
    "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
    "normalized_gene_data.to_csv(out_gene_data_file)\n",
    "print(f\"Normalized gene data saved to {out_gene_data_file}\")\n",
    "\n",
    "# 2. Link clinical and genetic data\n",
    "# In Step 2, we determined that Height data is not available in this dataset (trait_row = None)\n",
    "# Create a minimal clinical dataframe with the trait column (containing NaNs)\n",
    "sample_ids = normalized_gene_data.columns\n",
    "minimal_clinical_df = pd.DataFrame(index=sample_ids)\n",
    "minimal_clinical_df[trait] = np.nan  # Add the trait column with NaN values\n",
    "\n",
    "# If we have age and gender data from Step 2, add those columns\n",
    "if age_row is not None:\n",
    "    minimal_clinical_df['Age'] = get_feature_data(clinical_data, age_row, 'Age', convert_age).iloc[0]\n",
    "\n",
    "if gender_row is not None:\n",
    "    minimal_clinical_df['Gender'] = get_feature_data(clinical_data, gender_row, 'Gender', convert_gender).iloc[0]\n",
    "\n",
    "minimal_clinical_df.index.name = 'Sample'\n",
    "\n",
    "# Save this minimal clinical data for reference\n",
    "os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "minimal_clinical_df.to_csv(out_clinical_data_file)\n",
    "print(f\"Clinical data saved to {out_clinical_data_file}\")\n",
    "\n",
    "# Create a linked dataset \n",
    "linked_data = pd.concat([minimal_clinical_df, normalized_gene_data.T], axis=1)\n",
    "linked_data.index.name = 'Sample'\n",
    "print(f\"Linked data shape: {linked_data.shape}\")\n",
    "\n",
    "# We would normally handle missing values here, but since all trait values are missing,\n",
    "# the dataset will be empty after removing samples with missing trait values\n",
    "# Therefore, we'll skip that step\n",
    "\n",
    "# 4 & 5. Validate and save cohort information\n",
    "# Since trait_row was None in Step 2, we know Height data is not available\n",
    "is_gene_available = len(normalized_gene_data) > 0\n",
    "is_trait_available = False  # Height data is not available\n",
    "\n",
    "note = \"Dataset contains gene expression data but no Height measurements. This dataset is not usable for studying Height associations.\"\n",
    "\n",
    "# For datasets without trait data, we set is_biased to False\n",
    "# This indicates the dataset is not usable due to missing trait data, not due to bias\n",
    "is_biased = False\n",
    "\n",
    "# Final validation\n",
    "is_usable = validate_and_save_cohort_info(\n",
    "    is_final=True, \n",
    "    cohort=cohort, \n",
    "    info_path=json_path, \n",
    "    is_gene_available=is_gene_available, \n",
    "    is_trait_available=is_trait_available, \n",
    "    is_biased=is_biased,\n",
    "    df=linked_data,\n",
    "    note=note\n",
    ")\n",
    "\n",
    "# 6. Since there is no trait data, the dataset is not usable for our association study\n",
    "# So we should not save it to out_data_file\n",
    "print(f\"Dataset usability: {is_usable}\")\n",
    "if is_usable:\n",
    "    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
    "    linked_data.to_csv(out_data_file)\n",
    "    print(f\"Linked data saved to {out_data_file}\")\n",
    "else:\n",
    "    print(\"Dataset does not contain Height data and cannot be used for association studies.\")"
   ]
  }
 ],
 "metadata": {},
 "nbformat": 4,
 "nbformat_minor": 5
}