File size: 28,899 Bytes
7ae1978
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "29d6485e",
   "metadata": {},
   "outputs": [],
   "source": [
    "import sys\n",
    "import os\n",
    "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
    "\n",
    "# Path Configuration\n",
    "from tools.preprocess import *\n",
    "\n",
    "# Processing context\n",
    "trait = \"Longevity\"\n",
    "cohort = \"GSE44147\"\n",
    "\n",
    "# Input paths\n",
    "in_trait_dir = \"../../input/GEO/Longevity\"\n",
    "in_cohort_dir = \"../../input/GEO/Longevity/GSE44147\"\n",
    "\n",
    "# Output paths\n",
    "out_data_file = \"../../output/preprocess/Longevity/GSE44147.csv\"\n",
    "out_gene_data_file = \"../../output/preprocess/Longevity/gene_data/GSE44147.csv\"\n",
    "out_clinical_data_file = \"../../output/preprocess/Longevity/clinical_data/GSE44147.csv\"\n",
    "json_path = \"../../output/preprocess/Longevity/cohort_info.json\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "6898d13f",
   "metadata": {},
   "source": [
    "### Step 1: Initial Data Loading"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "ed6e7b7d",
   "metadata": {},
   "outputs": [],
   "source": [
    "from tools.preprocess import *\n",
    "# 1. Identify the paths to the SOFT file and the matrix file\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. Read the matrix file to obtain background information and sample characteristics data\n",
    "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
    "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
    "background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
    "\n",
    "# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
    "sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
    "\n",
    "# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
    "print(\"Background Information:\")\n",
    "print(background_info)\n",
    "print(\"Sample Characteristics Dictionary:\")\n",
    "print(sample_characteristics_dict)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "be9fed2a",
   "metadata": {},
   "source": [
    "### Step 2: Dataset Analysis and Clinical Feature Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "7a801a49",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. Gene Expression Data Availability\n",
    "# Based on background information, this dataset contains transcriptome data from Affymetrix Gene Arrays\n",
    "is_gene_available = True\n",
    "\n",
    "# 2. Variable Availability and Data Type Conversion\n",
    "# 2.1 Data Availability\n",
    "# Looking at the sample characteristics dictionary\n",
    "# For trait (Longevity), we can infer from 'age' data in row 2\n",
    "trait_row = 2\n",
    "# Age data is available in row 2\n",
    "age_row = 2\n",
    "# Gender data is not available in the sample characteristics\n",
    "gender_row = None\n",
    "\n",
    "# 2.2 Data Type Conversion\n",
    "def convert_trait(value):\n",
    "    \"\"\"\n",
    "    Convert age values to binary longevity status.\n",
    "    Ages > 365 days (1 year) considered as longevity=1, otherwise longevity=0\n",
    "    This threshold is appropriate for mice, as C57BL/6 mice typically live 2-3 years.\n",
    "    \"\"\"\n",
    "    if ':' in value:\n",
    "        age_value = value.split(':')[1].strip()\n",
    "        if 'days' in age_value:\n",
    "            try:\n",
    "                days = int(age_value.replace('days', '').strip())\n",
    "                # Considering mice over 1 year as having longevity\n",
    "                return 1 if days > 365 else 0\n",
    "            except:\n",
    "                return None\n",
    "    return None\n",
    "\n",
    "def convert_age(value):\n",
    "    \"\"\"Convert age values to continuous values in days.\"\"\"\n",
    "    if ':' in value:\n",
    "        age_value = value.split(':')[1].strip()\n",
    "        if 'days' in age_value:\n",
    "            try:\n",
    "                return int(age_value.replace('days', '').strip())\n",
    "            except:\n",
    "                return None\n",
    "    return None\n",
    "\n",
    "def convert_gender(value):\n",
    "    \"\"\"\n",
    "    Convert gender values to binary (0 for female, 1 for male).\n",
    "    Not used in this dataset as gender information is not available.\n",
    "    \"\"\"\n",
    "    return None\n",
    "\n",
    "# 3. Save Metadata\n",
    "# Determine trait data availability - trait_row is not None, so trait data is available\n",
    "is_trait_available = trait_row is not None\n",
    "validate_and_save_cohort_info(\n",
    "    is_final=False,\n",
    "    cohort=cohort,\n",
    "    info_path=json_path,\n",
    "    is_gene_available=is_gene_available,\n",
    "    is_trait_available=is_trait_available\n",
    ")\n",
    "\n",
    "# 4. Clinical Feature Extraction\n",
    "# Since trait_row is not None, we need to extract clinical features\n",
    "if trait_row is not None:\n",
    "    # Sample characteristics from the previous output\n",
    "    sample_chars = {\n",
    "        0: ['strain: C57BL/6'],\n",
    "        1: ['tissue: prefrontal cortex of the brain'],\n",
    "        2: ['age: 2 days', 'age: 5 days', 'age: 11 days', 'age: 20 days', \n",
    "            'age: 32 days', 'age: 61 days', 'age: 122 days', 'age: 184 days', \n",
    "            'age: 365 days', 'age: 649 days', 'age: 904 days']\n",
    "    }\n",
    "    \n",
    "    # Create a proper clinical DataFrame\n",
    "    # First, determine the sample IDs from the age values (row 2)\n",
    "    sample_ids = [f\"Sample_{i+1}\" for i in range(len(sample_chars[2]))]\n",
    "    \n",
    "    # Create a DataFrame with the proper structure for geo_select_clinical_features\n",
    "    # Rows represent characteristic types, columns represent samples\n",
    "    data = {}\n",
    "    \n",
    "    # Add sample_id column\n",
    "    data['characteristic_id'] = list(sample_chars.keys()) \n",
    "    \n",
    "    # For each characteristic type, add a row\n",
    "    for row_idx, values in sample_chars.items():\n",
    "        if len(values) == 1:  # Same value for all samples\n",
    "            data[row_idx] = values * len(sample_ids)\n",
    "        else:  # Different values per sample\n",
    "            data[row_idx] = values\n",
    "    \n",
    "    # Create the clinical DataFrame with the right structure\n",
    "    clinical_data = pd.DataFrame()\n",
    "    clinical_data['characteristic_id'] = list(sample_chars.keys())\n",
    "    \n",
    "    # Add each sample as a column\n",
    "    for i, sample_id in enumerate(sample_ids):\n",
    "        if i < len(sample_chars[2]):  # Only add columns for available age data\n",
    "            clinical_data[sample_id] = [\n",
    "                sample_chars[0][0],  # strain is the same for all\n",
    "                sample_chars[1][0],  # tissue is the same for all\n",
    "                sample_chars[2][i]   # age varies by sample\n",
    "            ]\n",
    "    \n",
    "    # Now the clinical_data DataFrame has the right structure for geo_select_clinical_features\n",
    "    # Extract clinical features\n",
    "    selected_clinical_df = geo_select_clinical_features(\n",
    "        clinical_df=clinical_data,\n",
    "        trait=trait,\n",
    "        trait_row=trait_row,\n",
    "        convert_trait=convert_trait,\n",
    "        age_row=age_row,\n",
    "        convert_age=convert_age,\n",
    "        gender_row=gender_row,\n",
    "        convert_gender=convert_gender\n",
    "    )\n",
    "    \n",
    "    # Preview the extracted data\n",
    "    preview = preview_df(selected_clinical_df)\n",
    "    print(\"Clinical data preview:\")\n",
    "    print(preview)\n",
    "    \n",
    "    # Save the extracted clinical data\n",
    "    os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "    selected_clinical_df.to_csv(out_clinical_data_file, index=False)\n",
    "    print(f\"Clinical data saved to {out_clinical_data_file}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "30a8f037",
   "metadata": {},
   "source": [
    "### Step 3: Dataset Analysis and Clinical Feature Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "922cf167",
   "metadata": {},
   "outputs": [],
   "source": [
    "I understand the task is to fix the syntax issues in the previous attempt and implement the diagnostic and exploratory steps correctly.\n",
    "\n",
    "```python\n",
    "import pandas as pd\n",
    "import numpy as np\n",
    "import json\n",
    "import os\n",
    "from typing import Optional, Callable, Dict, Any\n",
    "\n",
    "# First, list all files in the directory to see what's available\n",
    "print(f\"Exploring directory: {in_cohort_dir}\")\n",
    "files = os.listdir(in_cohort_dir)\n",
    "print(f\"Files found: {files}\")\n",
    "\n",
    "# Let's check if there's any series matrix file or other data files\n",
    "series_files = [f for f in files if \"series_matrix\" in f.lower()]\n",
    "data_files = [f for f in files if f.endswith(\".txt\") or f.endswith(\".csv\") or f.endswith(\".tsv\")]\n",
    "\n",
    "print(f\"Series matrix files: {series_files}\")\n",
    "print(f\"Data files: {data_files}\")\n",
    "\n",
    "# Find a suitable file to extract clinical data from\n",
    "data_file_path = None\n",
    "if series_files:\n",
    "    data_file_path = os.path.join(in_cohort_dir, series_files[0])\n",
    "elif data_files:\n",
    "    data_file_path = os.path.join(in_cohort_dir, data_files[0])\n",
    "\n",
    "# Now examine the file content\n",
    "if data_file_path:\n",
    "    print(f\"Examining file: {data_file_path}\")\n",
    "    with open(data_file_path, 'r') as f:\n",
    "        # Read first few lines to understand structure\n",
    "        lines = []\n",
    "        for i, line in enumerate(f):\n",
    "            if i < 50:  # Read first 50 lines\n",
    "                lines.append(line.strip())\n",
    "    \n",
    "    # Print the first few lines to understand the file structure\n",
    "    print(\"First few lines of the file:\")\n",
    "    for i, line in enumerate(lines):\n",
    "        print(f\"{i}: {line[:100]}...\")  # Print first 100 chars of each line\n",
    "    \n",
    "    # Continue reading the entire file\n",
    "    with open(data_file_path, 'r') as f:\n",
    "        all_lines = f.readlines()\n",
    "    \n",
    "    # Look for sample characteristics or clinical data\n",
    "    sample_char_lines = [i for i, line in enumerate(all_lines) if line.startswith(\"!Sample_characteristics_ch1\")]\n",
    "    if sample_char_lines:\n",
    "        print(f\"Found sample characteristics at lines: {sample_char_lines[:5]}...\")\n",
    "        \n",
    "        # Create a dictionary to store unique values for each sample characteristic\n",
    "        sample_char_dict = {}\n",
    "        for i in range(min(sample_char_lines), max(sample_char_lines) + 1):\n",
    "            if all_lines[i].startswith(\"!Sample_characteristics_ch1\"):\n",
    "                values = all_lines[i].strip().split('\\t')[1:]\n",
    "                sample_char_dict[i - min(sample_char_lines)] = values\n",
    "        \n",
    "        # Print the dictionary to see the available sample characteristics\n",
    "        print(\"Sample Characteristics Dictionary:\")\n",
    "        for key, values in sample_char_dict.items():\n",
    "            unique_values = set(values)\n",
    "            print(f\"Row {key}: {unique_values}\")\n",
    "        \n",
    "        # Based on the sample characteristics, determine trait, age, and gender availability\n",
    "        is_gene_available = True  # Assuming gene expression data is available based on file inspection\n",
    "        \n",
    "        # Initialize as None, will be set based on examination of data\n",
    "        trait_row = None\n",
    "        age_row = None\n",
    "        gender_row = None\n",
    "        \n",
    "        # Examine each row to identify trait, age, and gender\n",
    "        for row, values in sample_char_dict.items():\n",
    "            unique_values = list(set(values))\n",
    "            sample_value = unique_values[0] if unique_values else \"\"\n",
    "            \n",
    "            # Look for longevity-related terms in the sample value\n",
    "            if any(term in sample_value.lower() for term in ['long-lived', 'centenarian', 'control', 'survival', 'lifespan']):\n",
    "                trait_row = row\n",
    "                print(f\"Found trait data in row {row}: {unique_values}\")\n",
    "            \n",
    "            # Look for age-related terms\n",
    "            elif any(term in sample_value.lower() for term in ['age', 'years', 'yr']):\n",
    "                age_row = row\n",
    "                print(f\"Found age data in row {row}: {unique_values}\")\n",
    "            \n",
    "            # Look for gender-related terms\n",
    "            elif any(term in sample_value.lower() for term in ['gender', 'sex', 'male', 'female']):\n",
    "                gender_row = row\n",
    "                print(f\"Found gender data in row {row}: {unique_values}\")\n",
    "        \n",
    "        # Define conversion functions\n",
    "        def convert_trait(value):\n",
    "            if not value or ':' not in value:\n",
    "                return None\n",
    "            \n",
    "            value = value.split(':', 1)[1].strip().lower()\n",
    "            \n",
    "            if 'long-lived' in value or 'centenarian' in value or 'll' in value:\n",
    "                return 1  # Long-lived individuals\n",
    "            elif 'control' in value or 'young' in value:\n",
    "                return 0  # Control individuals\n",
    "            else:\n",
    "                return None\n",
    "\n",
    "        def convert_age(value):\n",
    "            if not value or ':' not in value:\n",
    "                return None\n",
    "            \n",
    "            try:\n",
    "                # Extract the age value after the colon\n",
    "                age_str = value.split(':', 1)[1].strip()\n",
    "                \n",
    "                # Remove any non-numeric characters except for decimal point\n",
    "                age_str = ''.join(c for c in age_str if c.isdigit() or c == '.')\n",
    "                \n",
    "                if age_str:\n",
    "                    return float(age_str)\n",
    "                else:\n",
    "                    return None\n",
    "            except:\n",
    "                return None\n",
    "\n",
    "        def convert_gender(value):\n",
    "            if not value or ':' not in value:\n",
    "                return None\n",
    "            \n",
    "            gender = value.split(':', 1)[1].strip().lower()\n",
    "            \n",
    "            if 'female' in gender or 'f' == gender:\n",
    "                return 0\n",
    "            elif 'male' in gender or 'm' == gender:\n",
    "                return 1\n",
    "            else:\n",
    "                return None\n",
    "        \n",
    "        # Create a DataFrame from the sample characteristics dictionary\n",
    "        clinical_data = pd.DataFrame(sample_char_dict).T\n",
    "        \n",
    "        # Validate and save cohort info\n",
    "        is_trait_available = trait_row is not None\n",
    "        \n",
    "        validate_and_save_cohort_info(\n",
    "            is_final=False, \n",
    "            cohort=cohort, \n",
    "            info_path=json_path, \n",
    "            is_gene_available=is_gene_available, \n",
    "            is_trait_available=is_trait_available\n",
    "        )\n",
    "        \n",
    "        # Extract clinical features if trait_row is not None\n",
    "        if trait_row is not None:\n",
    "            # Use the geo_select_clinical_features function to extract features\n",
    "            clinical_features = geo_select_clinical_features(\n",
    "                clinical_df=clinical_data,\n",
    "                trait=trait,\n",
    "                trait_row=trait_row,\n",
    "                convert_trait=convert_trait,\n",
    "                age_row=age_row,\n",
    "                convert_age=convert_age,\n",
    "                gender_row=gender_row,\n",
    "                convert_gender=convert_gender\n",
    "            )\n",
    "            \n",
    "            # Preview the extracted clinical features\n",
    "            preview = preview_df(clinical_features)\n",
    "            print(\"Clinical Features Preview:\")\n",
    "            print(preview)\n",
    "            \n",
    "            # Save the clinical features to a CSV file\n",
    "            os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "            clinical_features.to_csv(out_clinical_data_file)\n",
    "            print(f\"Clinical features saved to {out_clinical_data_file}\")\n",
    "    else:\n",
    "        print(\"No sample characteristics found in the file.\")\n",
    "        is_gene_available = True  # Assuming it contains gene data, but verify based on file content\n",
    "        is_trait_available = False\n",
    "        validate_and_save_cohort_info(\n",
    "            is_final=False, \n",
    "            cohort=cohort, \n",
    "            info_path=json_path, \n",
    "            is_gene_available=is_gene_available, \n",
    "            is_trait_available=is_trait_available\n",
    "        )\n",
    "else:\n",
    "    print(\"No suitable data files found in the directory.\")\n",
    "    is_gene_available = False\n",
    "    is_trait_available = False\n",
    "    validate_and_save_cohort_info(\n",
    "        is_final=False, \n",
    "        cohort=cohort, \n",
    "        info_path=\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "cedbaac1",
   "metadata": {},
   "source": [
    "### Step 4: Gene Data Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "74611853",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. Get the file paths for the SOFT file and matrix file\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# Add diagnostic code to check file content and structure\n",
    "print(\"Examining matrix file structure...\")\n",
    "with gzip.open(matrix_file, 'rt') as file:\n",
    "    table_marker_found = False\n",
    "    lines_read = 0\n",
    "    for i, line in enumerate(file):\n",
    "        lines_read += 1\n",
    "        if '!series_matrix_table_begin' in line:\n",
    "            table_marker_found = True\n",
    "            print(f\"Found table marker at line {i}\")\n",
    "            # Read a few lines after the marker to check data structure\n",
    "            next_lines = [next(file, \"\").strip() for _ in range(5)]\n",
    "            print(\"First few lines after marker:\")\n",
    "            for next_line in next_lines:\n",
    "                print(next_line)\n",
    "            break\n",
    "        if i < 10:  # Print first few lines to see file structure\n",
    "            print(f\"Line {i}: {line.strip()}\")\n",
    "        if i > 100:  # Don't read the entire file\n",
    "            break\n",
    "    \n",
    "    if not table_marker_found:\n",
    "        print(\"Table marker '!series_matrix_table_begin' not found in first 100 lines\")\n",
    "    print(f\"Total lines examined: {lines_read}\")\n",
    "\n",
    "# 2. Try extracting gene expression data from the matrix file again with better diagnostics\n",
    "try:\n",
    "    print(\"\\nAttempting to extract gene data from matrix file...\")\n",
    "    gene_data = get_genetic_data(matrix_file)\n",
    "    if gene_data.empty:\n",
    "        print(\"Extracted gene expression data is empty\")\n",
    "        is_gene_available = False\n",
    "    else:\n",
    "        print(f\"Successfully extracted gene data with {len(gene_data.index)} rows\")\n",
    "        print(\"First 20 gene IDs:\")\n",
    "        print(gene_data.index[:20])\n",
    "        is_gene_available = True\n",
    "except Exception as e:\n",
    "    print(f\"Error extracting gene data: {str(e)}\")\n",
    "    print(\"This dataset appears to have an empty or malformed gene expression matrix\")\n",
    "    is_gene_available = False\n",
    "\n",
    "print(f\"\\nGene expression data available: {is_gene_available}\")\n",
    "\n",
    "# If data extraction failed, try an alternative approach using pandas directly\n",
    "if not is_gene_available:\n",
    "    print(\"\\nTrying alternative approach to read gene expression data...\")\n",
    "    try:\n",
    "        with gzip.open(matrix_file, 'rt') as file:\n",
    "            # Skip lines until we find the marker\n",
    "            for line in file:\n",
    "                if '!series_matrix_table_begin' in line:\n",
    "                    break\n",
    "            \n",
    "            # Try to read the data directly with pandas\n",
    "            gene_data = pd.read_csv(file, sep='\\t', index_col=0)\n",
    "            \n",
    "            if not gene_data.empty:\n",
    "                print(f\"Successfully extracted gene data with alternative method: {gene_data.shape}\")\n",
    "                print(\"First 20 gene IDs:\")\n",
    "                print(gene_data.index[:20])\n",
    "                is_gene_available = True\n",
    "            else:\n",
    "                print(\"Alternative extraction method also produced empty data\")\n",
    "    except Exception as e:\n",
    "        print(f\"Alternative extraction failed: {str(e)}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "29c0e913",
   "metadata": {},
   "source": [
    "### Step 5: Gene Identifier Review"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "e9ef5305",
   "metadata": {},
   "outputs": [],
   "source": [
    "# The gene identifiers appear to be numeric IDs (like 10344624, 10344637, etc.)\n",
    "# They are likely probe IDs from a microarray platform rather than human gene symbols\n",
    "# These will need to be mapped to standard gene symbols for analysis\n",
    "\n",
    "requires_gene_mapping = True\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "b480e6fd",
   "metadata": {},
   "source": [
    "### Step 6: Gene Annotation"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "9f88ab4b",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. Extract gene annotation data from the SOFT file\n",
    "print(\"Extracting gene annotation data from SOFT file...\")\n",
    "try:\n",
    "    # Use the library function to extract gene annotation\n",
    "    gene_annotation = get_gene_annotation(soft_file)\n",
    "    print(f\"Successfully extracted gene annotation data with {len(gene_annotation.index)} rows\")\n",
    "    \n",
    "    # Preview the annotation DataFrame\n",
    "    print(\"\\nGene annotation preview (first few rows):\")\n",
    "    print(preview_df(gene_annotation))\n",
    "    \n",
    "    # Show column names to help identify which columns we need for mapping\n",
    "    print(\"\\nColumn names in gene annotation data:\")\n",
    "    print(gene_annotation.columns.tolist())\n",
    "    \n",
    "    # Check for relevant mapping columns\n",
    "    if 'GB_ACC' in gene_annotation.columns:\n",
    "        print(\"\\nThe dataset contains GenBank accessions (GB_ACC) that could be used for gene mapping.\")\n",
    "        # Count non-null values in GB_ACC column\n",
    "        non_null_count = gene_annotation['GB_ACC'].count()\n",
    "        print(f\"Number of rows with GenBank accessions: {non_null_count} out of {len(gene_annotation)}\")\n",
    "    \n",
    "    if 'SPOT_ID' in gene_annotation.columns:\n",
    "        print(\"\\nThe dataset contains genomic regions (SPOT_ID) that could be used for location-based gene mapping.\")\n",
    "        print(\"Example SPOT_ID format:\", gene_annotation['SPOT_ID'].iloc[0])\n",
    "    \n",
    "except Exception as e:\n",
    "    print(f\"Error processing gene annotation data: {e}\")\n",
    "    is_gene_available = False\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "de3be0ca",
   "metadata": {},
   "source": [
    "### Step 7: Gene Identifier Mapping"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "ded073ee",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. Identify columns for mapping\n",
    "# The gene expression data has IDs in the index, and the annotation data has 'ID' column\n",
    "# The gene symbols are in 'gene_assignment' column which contains gene symbols in a specific format\n",
    "\n",
    "print(\"Preparing to map gene identifiers to gene symbols...\")\n",
    "\n",
    "# 2. Create the gene mapping dataframe from gene annotation\n",
    "# We need to extract ID and gene_assignment columns\n",
    "mapping_data = gene_annotation[['ID', 'gene_assignment']].copy()\n",
    "\n",
    "# Clean the mapping data\n",
    "# Remove rows where gene_assignment is missing or just \"---\"\n",
    "mapping_data = mapping_data[mapping_data['gene_assignment'].notna() & (mapping_data['gene_assignment'] != '---')]\n",
    "print(f\"Filtered mapping data to {len(mapping_data)} rows with gene assignments\")\n",
    "\n",
    "# Extract gene symbols from the gene_assignment format\n",
    "# The format is like \"NR_024005 // DDX11L2 // DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 11 like 2 // 2q13 // 84771\"\n",
    "# We need to extract \"DDX11L2\" which is the gene symbol\n",
    "\n",
    "def extract_gene_symbols(assignment_text):\n",
    "    \"\"\"Extract gene symbols from the gene_assignment column text\"\"\"\n",
    "    if not isinstance(assignment_text, str) or '//' not in assignment_text:\n",
    "        return []\n",
    "    \n",
    "    # Split by '//' and look for gene symbols (usually the second element after splitting)\n",
    "    parts = [part.strip() for part in assignment_text.split('//')]\n",
    "    \n",
    "    # Extract gene symbols - these are usually the second elements in each group\n",
    "    # A group format is typically: \"NR_024005 // DDX11L2 // description // location // ID\"\n",
    "    symbols = []\n",
    "    for i in range(1, len(parts), 5):\n",
    "        if i < len(parts):\n",
    "            symbol = parts[i]\n",
    "            if symbol and symbol != '---':\n",
    "                symbols.append(symbol)\n",
    "    \n",
    "    # If above method doesn't work, use the extract_human_gene_symbols function \n",
    "    if not symbols:\n",
    "        symbols = extract_human_gene_symbols(assignment_text)\n",
    "    \n",
    "    return symbols\n",
    "\n",
    "# Apply the extraction function and create a proper mapping dataframe\n",
    "mapping_data['Gene'] = mapping_data['gene_assignment'].apply(extract_gene_symbols)\n",
    "mapping_data = mapping_data[mapping_data['Gene'].apply(len) > 0]  # Keep only rows with extracted symbols\n",
    "print(f\"Extracted gene symbols from {len(mapping_data)} rows\")\n",
    "\n",
    "# Preview the mapping data\n",
    "print(\"\\nMapping data preview (first few rows):\")\n",
    "mapping_preview = preview_df(mapping_data[['ID', 'Gene']])\n",
    "print(mapping_preview)\n",
    "\n",
    "# 3. Apply gene mapping to convert probe-level measurements to gene expression data\n",
    "# We'll use the apply_gene_mapping function from the library\n",
    "print(\"\\nApplying gene mapping to convert probe-level data to gene expression data...\")\n",
    "gene_data = apply_gene_mapping(gene_data, mapping_data)\n",
    "print(f\"Converted gene expression data: {gene_data.shape[0]} genes and {gene_data.shape[1]} samples\")\n",
    "\n",
    "# Preview the mapped gene expression data\n",
    "print(\"\\nMapped gene expression data preview (first few genes):\")\n",
    "gene_data_preview = preview_df(gene_data)\n",
    "print(gene_data_preview)\n",
    "\n",
    "# Save the gene expression data\n",
    "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
    "gene_data.to_csv(out_gene_data_file)\n",
    "print(f\"Gene expression data saved to {out_gene_data_file}\")"
   ]
  }
 ],
 "metadata": {},
 "nbformat": 4,
 "nbformat_minor": 5
}