File size: 42,267 Bytes
7ae1978
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "6941cb27",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T07:36:02.511523Z",
     "iopub.status.busy": "2025-03-25T07:36:02.511417Z",
     "iopub.status.idle": "2025-03-25T07:36:02.673181Z",
     "shell.execute_reply": "2025-03-25T07:36:02.672833Z"
    }
   },
   "outputs": [],
   "source": [
    "import sys\n",
    "import os\n",
    "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
    "\n",
    "# Path Configuration\n",
    "from tools.preprocess import *\n",
    "\n",
    "# Processing context\n",
    "trait = \"Longevity\"\n",
    "cohort = \"GSE48264\"\n",
    "\n",
    "# Input paths\n",
    "in_trait_dir = \"../../input/GEO/Longevity\"\n",
    "in_cohort_dir = \"../../input/GEO/Longevity/GSE48264\"\n",
    "\n",
    "# Output paths\n",
    "out_data_file = \"../../output/preprocess/Longevity/GSE48264.csv\"\n",
    "out_gene_data_file = \"../../output/preprocess/Longevity/gene_data/GSE48264.csv\"\n",
    "out_clinical_data_file = \"../../output/preprocess/Longevity/clinical_data/GSE48264.csv\"\n",
    "json_path = \"../../output/preprocess/Longevity/cohort_info.json\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "46642252",
   "metadata": {},
   "source": [
    "### Step 1: Initial Data Loading"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "92abd42c",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T07:36:02.674577Z",
     "iopub.status.busy": "2025-03-25T07:36:02.674434Z",
     "iopub.status.idle": "2025-03-25T07:36:02.761142Z",
     "shell.execute_reply": "2025-03-25T07:36:02.760829Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Background Information:\n",
      "!Series_title\t\"Uppsala Longitudinal Study of Adult Men (ULSAM)\"\n",
      "!Series_summary\t\"The Uppsala Longitudinal Study of Adult Men is a population-based study aimed at identifying risk factors for cardiovascular disease. At the time of biopsy all subjects were ~ 70yr of age\"\n",
      "!Series_overall_design\t\"We extracted RNA from muscle tissue taken from 129 subjects, when they were aged ~70yr and characterised as disease-free (note the above average longevity in Swedes born circa 1920 compared with US and UK populations). From these samples, 108 yielded RNA of sufficient quality to profile on Affymetrix gene-chips.\"\n",
      "!Series_overall_design\t\"Only survival data are used in the paper.\"\n",
      "!Series_overall_design\t\"There are no data from cardiovascular disease subjects; we only profiled the healthy subjects and followed for 20yrs.\"\n",
      "Sample Characteristics Dictionary:\n",
      "{0: ['disease-free: disease-free'], 1: ['age(approx): 70 yr'], 2: ['tissue: skeletal muscle biopsy (baseline)'], 3: ['survival: None', 'survival: Hosp', 'survival: Death'], 4: ['patient id: 32', 'patient id: 117', 'patient id: 152', 'patient id: 211', 'patient id: 241', 'patient id: 254', 'patient id: 255', 'patient id: 296', 'patient id: 298', 'patient id: 300', 'patient id: 317', 'patient id: 349', 'patient id: 351', 'patient id: 355', 'patient id: 373', 'patient id: 377', 'patient id: 381', 'patient id: 397', 'patient id: 421', 'patient id: 465', 'patient id: 498', 'patient id: 521', 'patient id: 549', 'patient id: 554', 'patient id: 576', 'patient id: 621', 'patient id: 632', 'patient id: 634', 'patient id: 664', 'patient id: 674']}\n"
     ]
    }
   ],
   "source": [
    "from tools.preprocess import *\n",
    "# 1. Identify the paths to the SOFT file and the matrix file\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. Read the matrix file to obtain background information and sample characteristics data\n",
    "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
    "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
    "background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
    "\n",
    "# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
    "sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
    "\n",
    "# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
    "print(\"Background Information:\")\n",
    "print(background_info)\n",
    "print(\"Sample Characteristics Dictionary:\")\n",
    "print(sample_characteristics_dict)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "70307e3a",
   "metadata": {},
   "source": [
    "### Step 2: Dataset Analysis and Clinical Feature Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "8e1b34bd",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T07:36:02.762192Z",
     "iopub.status.busy": "2025-03-25T07:36:02.762086Z",
     "iopub.status.idle": "2025-03-25T07:36:02.773174Z",
     "shell.execute_reply": "2025-03-25T07:36:02.772884Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Clinical Data Preview:\n",
      "GSM1173505: [nan]\n",
      "GSM1173506: [1.0]\n",
      "GSM1173507: [0.0]\n",
      "GSM1173508: [1.0]\n",
      "GSM1173509: [1.0]\n",
      "GSM1173510: [0.0]\n",
      "GSM1173511: [nan]\n",
      "GSM1173512: [0.0]\n",
      "GSM1173513: [1.0]\n",
      "GSM1173514: [1.0]\n",
      "GSM1173515: [1.0]\n",
      "GSM1173516: [0.0]\n",
      "GSM1173517: [1.0]\n",
      "GSM1173518: [nan]\n",
      "GSM1173519: [0.0]\n",
      "GSM1173520: [1.0]\n",
      "GSM1173521: [nan]\n",
      "GSM1173522: [1.0]\n",
      "GSM1173523: [nan]\n",
      "GSM1173524: [0.0]\n",
      "GSM1173525: [1.0]\n",
      "GSM1173526: [1.0]\n",
      "GSM1173527: [1.0]\n",
      "GSM1173528: [1.0]\n",
      "GSM1173529: [nan]\n",
      "GSM1173530: [1.0]\n",
      "GSM1173531: [1.0]\n",
      "GSM1173532: [nan]\n",
      "GSM1173533: [1.0]\n",
      "GSM1173534: [1.0]\n",
      "GSM1173535: [0.0]\n",
      "GSM1173536: [1.0]\n",
      "GSM1173537: [nan]\n",
      "GSM1173538: [1.0]\n",
      "GSM1173539: [1.0]\n",
      "GSM1173540: [1.0]\n",
      "GSM1173541: [nan]\n",
      "GSM1173542: [0.0]\n",
      "GSM1173543: [1.0]\n",
      "GSM1173544: [1.0]\n",
      "GSM1173545: [1.0]\n",
      "GSM1173546: [nan]\n",
      "GSM1173547: [1.0]\n",
      "GSM1173548: [nan]\n",
      "GSM1173549: [0.0]\n",
      "GSM1173550: [nan]\n",
      "GSM1173551: [nan]\n",
      "GSM1173552: [1.0]\n",
      "GSM1173553: [1.0]\n",
      "GSM1173554: [1.0]\n",
      "GSM1173555: [1.0]\n",
      "GSM1173556: [1.0]\n",
      "GSM1173557: [1.0]\n",
      "GSM1173558: [1.0]\n",
      "GSM1173559: [1.0]\n",
      "GSM1173560: [1.0]\n",
      "GSM1173561: [nan]\n",
      "GSM1173562: [nan]\n",
      "GSM1173563: [1.0]\n",
      "GSM1173564: [1.0]\n",
      "GSM1173565: [nan]\n",
      "GSM1173566: [nan]\n",
      "GSM1173567: [nan]\n",
      "GSM1173568: [nan]\n",
      "GSM1173569: [nan]\n",
      "GSM1173570: [1.0]\n",
      "GSM1173571: [nan]\n",
      "GSM1173572: [1.0]\n",
      "GSM1173573: [nan]\n",
      "GSM1173574: [0.0]\n",
      "GSM1173575: [1.0]\n",
      "GSM1173576: [1.0]\n",
      "GSM1173577: [nan]\n",
      "GSM1173578: [1.0]\n",
      "GSM1173579: [1.0]\n",
      "GSM1173580: [1.0]\n",
      "GSM1173581: [1.0]\n",
      "GSM1173582: [nan]\n",
      "GSM1173583: [1.0]\n",
      "GSM1173584: [nan]\n",
      "GSM1173585: [nan]\n",
      "GSM1173586: [1.0]\n",
      "GSM1173587: [nan]\n",
      "GSM1173588: [1.0]\n",
      "GSM1173589: [1.0]\n",
      "GSM1173590: [1.0]\n",
      "GSM1173591: [1.0]\n",
      "GSM1173592: [1.0]\n",
      "GSM1173593: [nan]\n",
      "GSM1173594: [1.0]\n",
      "GSM1173595: [nan]\n",
      "GSM1173596: [nan]\n",
      "GSM1173597: [1.0]\n",
      "GSM1173598: [1.0]\n",
      "GSM1173599: [nan]\n",
      "GSM1173600: [1.0]\n",
      "GSM1173601: [1.0]\n",
      "GSM1173602: [1.0]\n",
      "GSM1173603: [1.0]\n",
      "GSM1173604: [0.0]\n",
      "GSM1173605: [1.0]\n",
      "GSM1173606: [0.0]\n",
      "GSM1173607: [1.0]\n",
      "GSM1173608: [1.0]\n",
      "GSM1173609: [1.0]\n",
      "GSM1173610: [1.0]\n",
      "GSM1173611: [1.0]\n",
      "GSM1173612: [nan]\n",
      "Clinical data saved to ../../output/preprocess/Longevity/clinical_data/GSE48264.csv\n"
     ]
    }
   ],
   "source": [
    "# 1. Gene Expression Data Availability\n",
    "# Background info mentions \"Affymetrix gene-chips\" which indicates this is gene expression data\n",
    "is_gene_available = True\n",
    "\n",
    "# 2. Variable Availability and Data Type Conversion\n",
    "# 2.1 Data Availability\n",
    "\n",
    "# For trait (Longevity):\n",
    "# The background information indicates this is a longevity study where subjects were followed for 20 years\n",
    "# From sample characteristics, key 3 shows 'survival' status which can represent longevity\n",
    "trait_row = 3\n",
    "\n",
    "# For age:\n",
    "# All subjects are approximately 70 years old (constant value as per background info)\n",
    "age_row = None  # Since all subjects have the same age (70), it's not useful for our association study\n",
    "\n",
    "# For gender:\n",
    "# No information about gender is provided in the sample characteristics\n",
    "gender_row = None\n",
    "\n",
    "# 2.2 Data Type Conversion\n",
    "\n",
    "def convert_trait(value):\n",
    "    \"\"\"Convert survival status to binary classification for longevity.\"\"\"\n",
    "    if value is None or \"None\" in value:\n",
    "        return None\n",
    "    \n",
    "    # Extract value after colon if present\n",
    "    if \":\" in value:\n",
    "        value = value.split(\":\", 1)[1].strip()\n",
    "    \n",
    "    # In this study, 'Death' likely indicates lower longevity while 'Hosp' or 'None' \n",
    "    # (still in hospital/alive) indicates higher longevity\n",
    "    if value.lower() == \"death\":\n",
    "        return 0  # Death = lower longevity\n",
    "    elif value.lower() in [\"hosp\", \"none\"]:\n",
    "        return 1  # Hospitalized or None (alive) = higher longevity\n",
    "    else:\n",
    "        return None\n",
    "\n",
    "def convert_age(value):\n",
    "    \"\"\"Convert age to continuous value.\"\"\"\n",
    "    # Not used in this case as age is constant\n",
    "    if value is None:\n",
    "        return None\n",
    "    \n",
    "    if \":\" in value:\n",
    "        value = value.split(\":\", 1)[1].strip()\n",
    "    \n",
    "    try:\n",
    "        # Extract numeric part from strings like \"70 yr\"\n",
    "        age_value = float(re.search(r'(\\d+)', value).group(1))\n",
    "        return age_value\n",
    "    except (ValueError, AttributeError):\n",
    "        return None\n",
    "\n",
    "def convert_gender(value):\n",
    "    \"\"\"Convert gender to binary (0=female, 1=male).\"\"\"\n",
    "    # Not used in this case as gender information is not available\n",
    "    if value is None:\n",
    "        return None\n",
    "    \n",
    "    if \":\" in value:\n",
    "        value = value.split(\":\", 1)[1].strip()\n",
    "    \n",
    "    if value.lower() in [\"female\", \"f\"]:\n",
    "        return 0\n",
    "    elif value.lower() in [\"male\", \"m\"]:\n",
    "        return 1\n",
    "    else:\n",
    "        return None\n",
    "\n",
    "# 3. Save Metadata\n",
    "is_trait_available = trait_row is not None\n",
    "validate_and_save_cohort_info(\n",
    "    is_final=False,\n",
    "    cohort=cohort,\n",
    "    info_path=json_path,\n",
    "    is_gene_available=is_gene_available,\n",
    "    is_trait_available=is_trait_available\n",
    ")\n",
    "\n",
    "# 4. Clinical Feature Extraction\n",
    "if trait_row is not None:\n",
    "    # We've already determined trait data is available\n",
    "    clinical_selected = geo_select_clinical_features(\n",
    "        clinical_df=clinical_data,\n",
    "        trait=trait,\n",
    "        trait_row=trait_row,\n",
    "        convert_trait=convert_trait,\n",
    "        age_row=age_row,\n",
    "        convert_age=convert_age,\n",
    "        gender_row=gender_row,\n",
    "        convert_gender=convert_gender\n",
    "    )\n",
    "    \n",
    "    # Preview the clinical data\n",
    "    preview = preview_df(clinical_selected)\n",
    "    print(\"Clinical Data Preview:\")\n",
    "    for col, values in preview.items():\n",
    "        print(f\"{col}: {values}\")\n",
    "    \n",
    "    # Save the clinical data\n",
    "    clinical_selected.to_csv(out_clinical_data_file)\n",
    "    print(f\"Clinical data saved to {out_clinical_data_file}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "7c838419",
   "metadata": {},
   "source": [
    "### Step 3: Gene Data Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "65dff786",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T07:36:02.774199Z",
     "iopub.status.busy": "2025-03-25T07:36:02.774097Z",
     "iopub.status.idle": "2025-03-25T07:36:02.937474Z",
     "shell.execute_reply": "2025-03-25T07:36:02.937104Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Examining matrix file structure...\n",
      "Line 0: !Series_title\t\"Uppsala Longitudinal Study of Adult Men (ULSAM)\"\n",
      "Line 1: !Series_geo_accession\t\"GSE48264\"\n",
      "Line 2: !Series_status\t\"Public on Aug 05 2015\"\n",
      "Line 3: !Series_submission_date\t\"Jun 25 2013\"\n",
      "Line 4: !Series_last_update_date\t\"May 30 2024\"\n",
      "Line 5: !Series_pubmed_id\t\"26343147\"\n",
      "Line 6: !Series_summary\t\"The Uppsala Longitudinal Study of Adult Men is a population-based study aimed at identifying risk factors for cardiovascular disease. At the time of biopsy all subjects were ~ 70yr of age\"\n",
      "Line 7: !Series_overall_design\t\"We extracted RNA from muscle tissue taken from 129 subjects, when they were aged ~70yr and characterised as disease-free (note the above average longevity in Swedes born circa 1920 compared with US and UK populations). From these samples, 108 yielded RNA of sufficient quality to profile on Affymetrix gene-chips.\"\n",
      "Line 8: !Series_overall_design\t\"Only survival data are used in the paper.\"\n",
      "Line 9: !Series_overall_design\t\"There are no data from cardiovascular disease subjects; we only profiled the healthy subjects and followed for 20yrs.\"\n",
      "Found table marker at line 68\n",
      "First few lines after marker:\n",
      "\"ID_REF\"\t\"GSM1173505\"\t\"GSM1173506\"\t\"GSM1173507\"\t\"GSM1173508\"\t\"GSM1173509\"\t\"GSM1173510\"\t\"GSM1173511\"\t\"GSM1173512\"\t\"GSM1173513\"\t\"GSM1173514\"\t\"GSM1173515\"\t\"GSM1173516\"\t\"GSM1173517\"\t\"GSM1173518\"\t\"GSM1173519\"\t\"GSM1173520\"\t\"GSM1173521\"\t\"GSM1173522\"\t\"GSM1173523\"\t\"GSM1173524\"\t\"GSM1173525\"\t\"GSM1173526\"\t\"GSM1173527\"\t\"GSM1173528\"\t\"GSM1173529\"\t\"GSM1173530\"\t\"GSM1173531\"\t\"GSM1173532\"\t\"GSM1173533\"\t\"GSM1173534\"\t\"GSM1173535\"\t\"GSM1173536\"\t\"GSM1173537\"\t\"GSM1173538\"\t\"GSM1173539\"\t\"GSM1173540\"\t\"GSM1173541\"\t\"GSM1173542\"\t\"GSM1173543\"\t\"GSM1173544\"\t\"GSM1173545\"\t\"GSM1173546\"\t\"GSM1173547\"\t\"GSM1173548\"\t\"GSM1173549\"\t\"GSM1173550\"\t\"GSM1173551\"\t\"GSM1173552\"\t\"GSM1173553\"\t\"GSM1173554\"\t\"GSM1173555\"\t\"GSM1173556\"\t\"GSM1173557\"\t\"GSM1173558\"\t\"GSM1173559\"\t\"GSM1173560\"\t\"GSM1173561\"\t\"GSM1173562\"\t\"GSM1173563\"\t\"GSM1173564\"\t\"GSM1173565\"\t\"GSM1173566\"\t\"GSM1173567\"\t\"GSM1173568\"\t\"GSM1173569\"\t\"GSM1173570\"\t\"GSM1173571\"\t\"GSM1173572\"\t\"GSM1173573\"\t\"GSM1173574\"\t\"GSM1173575\"\t\"GSM1173576\"\t\"GSM1173577\"\t\"GSM1173578\"\t\"GSM1173579\"\t\"GSM1173580\"\t\"GSM1173581\"\t\"GSM1173582\"\t\"GSM1173583\"\t\"GSM1173584\"\t\"GSM1173585\"\t\"GSM1173586\"\t\"GSM1173587\"\t\"GSM1173588\"\t\"GSM1173589\"\t\"GSM1173590\"\t\"GSM1173591\"\t\"GSM1173592\"\t\"GSM1173593\"\t\"GSM1173594\"\t\"GSM1173595\"\t\"GSM1173596\"\t\"GSM1173597\"\t\"GSM1173598\"\t\"GSM1173599\"\t\"GSM1173600\"\t\"GSM1173601\"\t\"GSM1173602\"\t\"GSM1173603\"\t\"GSM1173604\"\t\"GSM1173605\"\t\"GSM1173606\"\t\"GSM1173607\"\t\"GSM1173608\"\t\"GSM1173609\"\t\"GSM1173610\"\t\"GSM1173611\"\t\"GSM1173612\"\n",
      "2315251\t1.6625\t2.51346\t2.36355\t1.91738\t1.82858\t1.85749\t1.24533\t1.31424\t1.66539\t3.67598\t3.00575\t2.09848\t3.42897\t3.00353\t1.35107\t2.16244\t1.43881\t3.74356\t3.65748\t2.09118\t2.83241\t2.10274\t1.84639\t2.57895\t2.96017\t1.74633\t2.27527\t2.3054\t2.6226\t2.59568\t2.60618\t2.01028\t1.27462\t2.44314\t0.94203\t2.00685\t2.08527\t1.48364\t2.60979\t1.65357\t2.67965\t2.52259\t1.69177\t1.87854\t1.32021\t1.51115\t3.19091\t2.32135\t2.12479\t2.26363\t1.64933\t3.43239\t2.27605\t1.83928\t1.92679\t3.20384\t1.53361\t1.72462\t3.35069\t2.10301\t1.8998\t2.51275\t1.93146\t1.18977\t1.3406\t1.58408\t2.12344\t1.69053\t2.4805\t1.53375\t1.56115\t2.29696\t1.44913\t1.91252\t1.37842\t2.25242\t1.89581\t2.25973\t1.54691\t1.93039\t2.15321\t2.80556\t1.58334\t0.72185\t1.18698\t1.96799\t0.48776\t2.27402\t2.60109\t1.593\t2.33917\t1.65513\t1.65221\t1.84232\t2.62009\t2.08524\t2.55304\t1.57812\t1.25171\t1.29531\t1.62561\t1.91207\t1.86378\t1.48925\t2.13879\t1.9227\t2.08824\t1.5927\n",
      "2315373\t3.50568\t4.3701\t4.65679\t4.00858\t4.58412\t4.3603\t4.41542\t4.34205\t4.14843\t4.64332\t3.49333\t3.93799\t4.41747\t3.53673\t4.54156\t3.77234\t4.47328\t4.12599\t3.45726\t4.38519\t4.79563\t3.83624\t4.45907\t4.19799\t4.40354\t4.58811\t4.65633\t4.37243\t3.92761\t5.0411\t3.75227\t4.57312\t4.78447\t4.8717\t4.86439\t3.58688\t3.98416\t4.19899\t4.33774\t4.04551\t4.16579\t4.06802\t4.98499\t4.29584\t3.98601\t4.06154\t3.671\t4.56422\t4.52809\t4.68446\t3.93118\t3.68203\t4.34013\t4.10425\t3.76499\t4.04342\t3.92433\t3.87268\t4.64779\t3.74486\t4.76143\t4.24988\t3.9635\t4.14533\t4.12101\t4.19695\t4.1222\t4.39882\t4.14096\t4.52043\t4.50402\t4.0903\t4.64056\t4.13182\t3.73438\t3.7124\t4.40603\t3.53301\t4.18143\t4.18906\t3.87816\t4.78147\t4.29978\t4.73193\t4.93363\t3.66046\t5.19922\t4.06943\t4.67873\t3.97599\t4.10228\t4.09797\t4.57418\t3.67079\t4.13481\t3.91291\t3.86234\t3.76643\t4.40242\t4.53476\t3.49467\t3.633\t4.05735\t4.06769\t3.89504\t3.89231\t3.83491\t3.86222\n",
      "2315554\t5.54892\t5.17464\t6.01821\t6.15828\t6.24022\t5.8784\t5.91033\t6.17278\t6.12394\t5.85066\t3.63529\t5.356\t5.73376\t5.61848\t6.08851\t5.77143\t5.80273\t5.39526\t4.10214\t5.61218\t6.19465\t5.74238\t6.05246\t6.02274\t6.13643\t5.98705\t5.63708\t6.04416\t5.62139\t6.17425\t6.05058\t5.79956\t6.19437\t5.89037\t6.23914\t5.68769\t5.98207\t6.06412\t5.65067\t5.99585\t5.58823\t5.68652\t5.97816\t5.62619\t5.52789\t5.87833\t5.39128\t5.89759\t5.82607\t6.1015\t5.29099\t5.88468\t5.73494\t5.23771\t5.10915\t4.92755\t5.14634\t5.90693\t5.61058\t5.6658\t6.12567\t5.31772\t5.30799\t5.67681\t5.20848\t5.84349\t5.48239\t5.38801\t5.17892\t6.07708\t5.87284\t5.34811\t5.79936\t5.40173\t5.04538\t5.30407\t5.24664\t5.55799\t5.25383\t5.38698\t5.79761\t5.95991\t5.84171\t6.08714\t6.23157\t5.73516\t5.87064\t5.40493\t5.94955\t5.80087\t5.31768\t5.51424\t5.80708\t5.26357\t5.72145\t5.27614\t5.56896\t4.98034\t5.7026\t5.63994\t5.127\t5.32574\t5.26253\t5.67304\t5.44871\t5.56227\t5.32473\t5.43893\n",
      "2315633\t4.76869\t4.05106\t4.73932\t5.06837\t5.11746\t4.91339\t4.83778\t4.73815\t4.98764\t4.29588\t2.77686\t4.17517\t4.58925\t4.38449\t4.90178\t4.01578\t4.93658\t4.34064\t3.93727\t4.93238\t4.66084\t4.64559\t4.76074\t4.61128\t4.56524\t4.82437\t4.52397\t4.64283\t3.76659\t4.33543\t4.43474\t4.64813\t4.90559\t4.58859\t4.66261\t4.96832\t5.26508\t4.73794\t4.04217\t5.16203\t4.42436\t4.39656\t4.96819\t4.61398\t4.75491\t4.96532\t4.17281\t4.42254\t4.54202\t4.61717\t4.04687\t4.71569\t4.54686\t4.151\t4.16337\t4.01645\t4.39985\t5.01517\t4.05244\t4.29146\t4.64252\t4.31357\t4.10874\t4.46299\t4.1784\t4.44936\t4.35727\t4.45397\t4.47852\t4.59027\t4.47219\t4.39506\t4.34317\t4.15718\t4.08462\t3.98081\t4.10179\t4.44616\t4.21755\t4.43664\t4.2901\t4.33283\t4.69657\t4.99713\t4.83096\t4.17814\t4.58521\t4.18866\t4.31463\t4.58201\t4.05039\t4.3086\t4.96537\t4.28192\t4.73299\t4.32513\t4.17873\t4.41806\t4.17794\t4.52559\t4.15158\t3.96169\t3.8278\t4.33307\t4.25036\t4.33786\t4.47358\t4.3229\n",
      "Total lines examined: 69\n",
      "\n",
      "Attempting to extract gene data from matrix file...\n",
      "Successfully extracted gene data with 18738 rows\n",
      "First 20 gene IDs:\n",
      "Index(['2315251', '2315373', '2315554', '2315633', '2315674', '2315739',\n",
      "       '2315894', '2315918', '2315951', '2316069', '2316218', '2316245',\n",
      "       '2316379', '2316558', '2316605', '2316746', '2316905', '2316953',\n",
      "       '2317246', '2317317'],\n",
      "      dtype='object', name='ID')\n",
      "\n",
      "Gene expression data available: True\n"
     ]
    }
   ],
   "source": [
    "# 1. Get the file paths for the SOFT file and matrix file\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# Add diagnostic code to check file content and structure\n",
    "print(\"Examining matrix file structure...\")\n",
    "with gzip.open(matrix_file, 'rt') as file:\n",
    "    table_marker_found = False\n",
    "    lines_read = 0\n",
    "    for i, line in enumerate(file):\n",
    "        lines_read += 1\n",
    "        if '!series_matrix_table_begin' in line:\n",
    "            table_marker_found = True\n",
    "            print(f\"Found table marker at line {i}\")\n",
    "            # Read a few lines after the marker to check data structure\n",
    "            next_lines = [next(file, \"\").strip() for _ in range(5)]\n",
    "            print(\"First few lines after marker:\")\n",
    "            for next_line in next_lines:\n",
    "                print(next_line)\n",
    "            break\n",
    "        if i < 10:  # Print first few lines to see file structure\n",
    "            print(f\"Line {i}: {line.strip()}\")\n",
    "        if i > 100:  # Don't read the entire file\n",
    "            break\n",
    "    \n",
    "    if not table_marker_found:\n",
    "        print(\"Table marker '!series_matrix_table_begin' not found in first 100 lines\")\n",
    "    print(f\"Total lines examined: {lines_read}\")\n",
    "\n",
    "# 2. Try extracting gene expression data from the matrix file again with better diagnostics\n",
    "try:\n",
    "    print(\"\\nAttempting to extract gene data from matrix file...\")\n",
    "    gene_data = get_genetic_data(matrix_file)\n",
    "    if gene_data.empty:\n",
    "        print(\"Extracted gene expression data is empty\")\n",
    "        is_gene_available = False\n",
    "    else:\n",
    "        print(f\"Successfully extracted gene data with {len(gene_data.index)} rows\")\n",
    "        print(\"First 20 gene IDs:\")\n",
    "        print(gene_data.index[:20])\n",
    "        is_gene_available = True\n",
    "except Exception as e:\n",
    "    print(f\"Error extracting gene data: {str(e)}\")\n",
    "    print(\"This dataset appears to have an empty or malformed gene expression matrix\")\n",
    "    is_gene_available = False\n",
    "\n",
    "print(f\"\\nGene expression data available: {is_gene_available}\")\n",
    "\n",
    "# If data extraction failed, try an alternative approach using pandas directly\n",
    "if not is_gene_available:\n",
    "    print(\"\\nTrying alternative approach to read gene expression data...\")\n",
    "    try:\n",
    "        with gzip.open(matrix_file, 'rt') as file:\n",
    "            # Skip lines until we find the marker\n",
    "            for line in file:\n",
    "                if '!series_matrix_table_begin' in line:\n",
    "                    break\n",
    "            \n",
    "            # Try to read the data directly with pandas\n",
    "            gene_data = pd.read_csv(file, sep='\\t', index_col=0)\n",
    "            \n",
    "            if not gene_data.empty:\n",
    "                print(f\"Successfully extracted gene data with alternative method: {gene_data.shape}\")\n",
    "                print(\"First 20 gene IDs:\")\n",
    "                print(gene_data.index[:20])\n",
    "                is_gene_available = True\n",
    "            else:\n",
    "                print(\"Alternative extraction method also produced empty data\")\n",
    "    except Exception as e:\n",
    "        print(f\"Alternative extraction failed: {str(e)}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "f439d699",
   "metadata": {},
   "source": [
    "### Step 4: Gene Identifier Review"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "9a3b6934",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T07:36:02.938793Z",
     "iopub.status.busy": "2025-03-25T07:36:02.938674Z",
     "iopub.status.idle": "2025-03-25T07:36:02.940601Z",
     "shell.execute_reply": "2025-03-25T07:36:02.940330Z"
    }
   },
   "outputs": [],
   "source": [
    "# Examining the gene identifiers in the gene expression data\n",
    "# The gene identifiers appear to be numeric values (e.g., 2315251, 2315373)\n",
    "# These are likely probe IDs from an Affymetrix microarray rather than standard human gene symbols\n",
    "# Based on Series_summary mentioning Affymetrix gene-chips and the numeric format,\n",
    "# these identifiers need to be mapped to human gene symbols\n",
    "\n",
    "requires_gene_mapping = True\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "ced68391",
   "metadata": {},
   "source": [
    "### Step 5: Gene Annotation"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "28b25c0a",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T07:36:02.941764Z",
     "iopub.status.busy": "2025-03-25T07:36:02.941662Z",
     "iopub.status.idle": "2025-03-25T07:36:06.480623Z",
     "shell.execute_reply": "2025-03-25T07:36:06.480251Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Extracting gene annotation data from SOFT file...\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Successfully extracted gene annotation data with 2340731 rows\n",
      "\n",
      "Gene annotation preview (first few rows):\n",
      "{'ID': ['2315100', '2315106', '2315109', '2315111', '2315113'], 'GB_LIST': ['NR_024005,NR_034090,NR_024004,AK093685', 'DQ786314', nan, nan, 'DQ786265'], 'SPOT_ID': ['chr1:11884-14409', 'chr1:14760-15198', 'chr1:19408-19712', 'chr1:25142-25532', 'chr1:27563-27813'], 'seqname': ['chr1', 'chr1', 'chr1', 'chr1', 'chr1'], 'RANGE_GB': ['NC_000001.10', 'NC_000001.10', 'NC_000001.10', 'NC_000001.10', 'NC_000001.10'], 'RANGE_STRAND': ['+', '+', '+', '+', '+'], 'RANGE_START': ['11884', '14760', '19408', '25142', '27563'], 'RANGE_STOP': ['14409', '15198', '19712', '25532', '27813'], 'total_probes': ['20', '8', '4', '4', '4'], 'gene_assignment': ['NR_024005 // DDX11L2 // DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 11 like 2 // 2q13 // 84771 /// NR_034090 // DDX11L9 // DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 11 like 9 // 15q26.3 // 100288486 /// NR_024004 // DDX11L2 // DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 11 like 2 // 2q13 // 84771 /// AK093685 // DDX11L2 // DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 11 like 2 // 2q13 // 84771', '---', '---', '---', '---'], 'mrna_assignment': ['NR_024005 // RefSeq // Homo sapiens DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 11 like 2 (DDX11L2), transcript variant 2, non-coding RNA. // chr1 // 100 // 80 // 16 // 16 // 0 /// NR_034090 // RefSeq // Homo sapiens DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 11 like 9 (DDX11L9), non-coding RNA. // chr1 // 100 // 80 // 16 // 16 // 0 /// NR_024004 // RefSeq // Homo sapiens DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 11 like 2 (DDX11L2), transcript variant 1, non-coding RNA. // chr1 // 100 // 75 // 15 // 15 // 0 /// AK093685 // GenBank // Homo sapiens cDNA FLJ36366 fis, clone THYMU2007824. // chr1 // 94 // 80 // 15 // 16 // 0 /// ENST00000513886 // ENSEMBL // cdna:known chromosome:GRCh37:16:61555:64090:1 gene:ENSG00000233614 // chr1 // 100 // 80 // 16 // 16 // 0 /// ENST00000456328 // ENSEMBL // cdna:known chromosome:GRCh37:1:11869:14409:1 gene:ENSG00000223972 // chr1 // 100 // 80 // 16 // 16 // 0 /// ENST00000518655 // ENSEMBL // cdna:known chromosome:GRCh37:1:11869:14409:1 gene:ENSG00000253101 // chr1 // 100 // 80 // 16 // 16 // 0', 'DQ786314 // GenBank // Homo sapiens clone HLS_IMAGE_811138 mRNA sequence. // chr1 // 100 // 38 // 3 // 3 // 0', '---', '---', 'DQ786265 // GenBank // Homo sapiens clone HLS_IMAGE_298685 mRNA sequence. // chr1 // 100 // 100 // 4 // 4 // 0'], 'category': ['main', 'main', '---', '---', 'main']}\n",
      "\n",
      "Column names in gene annotation data:\n",
      "['ID', 'GB_LIST', 'SPOT_ID', 'seqname', 'RANGE_GB', 'RANGE_STRAND', 'RANGE_START', 'RANGE_STOP', 'total_probes', 'gene_assignment', 'mrna_assignment', 'category']\n",
      "\n",
      "The dataset contains genomic regions (SPOT_ID) that could be used for location-based gene mapping.\n",
      "Example SPOT_ID format: chr1:11884-14409\n"
     ]
    }
   ],
   "source": [
    "# 1. Extract gene annotation data from the SOFT file\n",
    "print(\"Extracting gene annotation data from SOFT file...\")\n",
    "try:\n",
    "    # Use the library function to extract gene annotation\n",
    "    gene_annotation = get_gene_annotation(soft_file)\n",
    "    print(f\"Successfully extracted gene annotation data with {len(gene_annotation.index)} rows\")\n",
    "    \n",
    "    # Preview the annotation DataFrame\n",
    "    print(\"\\nGene annotation preview (first few rows):\")\n",
    "    print(preview_df(gene_annotation))\n",
    "    \n",
    "    # Show column names to help identify which columns we need for mapping\n",
    "    print(\"\\nColumn names in gene annotation data:\")\n",
    "    print(gene_annotation.columns.tolist())\n",
    "    \n",
    "    # Check for relevant mapping columns\n",
    "    if 'GB_ACC' in gene_annotation.columns:\n",
    "        print(\"\\nThe dataset contains GenBank accessions (GB_ACC) that could be used for gene mapping.\")\n",
    "        # Count non-null values in GB_ACC column\n",
    "        non_null_count = gene_annotation['GB_ACC'].count()\n",
    "        print(f\"Number of rows with GenBank accessions: {non_null_count} out of {len(gene_annotation)}\")\n",
    "    \n",
    "    if 'SPOT_ID' in gene_annotation.columns:\n",
    "        print(\"\\nThe dataset contains genomic regions (SPOT_ID) that could be used for location-based gene mapping.\")\n",
    "        print(\"Example SPOT_ID format:\", gene_annotation['SPOT_ID'].iloc[0])\n",
    "    \n",
    "except Exception as e:\n",
    "    print(f\"Error processing gene annotation data: {e}\")\n",
    "    is_gene_available = False\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "298fdd12",
   "metadata": {},
   "source": [
    "### Step 6: Gene Identifier Mapping"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "2e915ef3",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T07:36:06.481991Z",
     "iopub.status.busy": "2025-03-25T07:36:06.481866Z",
     "iopub.status.idle": "2025-03-25T07:36:10.448070Z",
     "shell.execute_reply": "2025-03-25T07:36:10.447677Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "Analyzing gene assignment data format...\n",
      "Sample gene assignments:\n",
      "1: NR_024005 // DDX11L2 // DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 11 like 2 // 2q13 // 84771 /// NR_034090 // DDX11L9 // DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 11 like 9 // 15q26.3 // 100288486 /// NR_024004 // DDX11L2 // DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 11 like 2 // 2q13 // 84771 /// AK093685 // DDX11L2 // DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 11 like 2 // 2q13 // 84771\n",
      "2: ---\n",
      "3: ---\n",
      "\n",
      "Creating gene mapping dataframe...\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Initial mapping dataframe shape: (33475, 2)\n",
      "Sample of mapping dataframe before processing:\n",
      "         ID                                               Gene\n",
      "0   2315100  NR_024005 // DDX11L2 // DEAD/H (Asp-Glu-Ala-As...\n",
      "10  2315125  NM_001005240 // OR4F17 // olfactory receptor, ...\n",
      "14  2315147  XM_002343043 // LOC100288692 // protein capicu...\n",
      "15  2315160  AK303004 // FLJ45445 // hypothetical LOC399844...\n",
      "16  2315163  AK302511 // LOC100132062 // hypothetical LOC10...\n",
      "\n",
      "Applying gene mapping to convert probe-level expression to gene-level expression...\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Resulting gene expression dataframe shape: (50375, 108)\n",
      "First few gene symbols in gene expression data:\n",
      "['A-', 'A-2', 'A-52', 'A-E', 'A-I', 'A-II', 'A-IV', 'A-V', 'A0', 'A1']\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Gene expression data saved to ../../output/preprocess/Longevity/gene_data/GSE48264.csv\n"
     ]
    }
   ],
   "source": [
    "# 1. From the gene annotation preview, I can see that:\n",
    "# - The 'ID' column in gene_annotation matches the probe IDs in gene_data\n",
    "# - The 'gene_assignment' column contains gene symbol information but needs parsing\n",
    "\n",
    "print(\"\\nAnalyzing gene assignment data format...\")\n",
    "# Examine the gene_assignment format to understand how to extract gene symbols\n",
    "gene_assignment_samples = gene_annotation['gene_assignment'].dropna().head(10).tolist()\n",
    "print(\"Sample gene assignments:\")\n",
    "for i, sample in enumerate(gene_assignment_samples[:3]):  # Just show first 3 for brevity\n",
    "    print(f\"{i+1}: {sample}\")\n",
    "\n",
    "# 2. Create a mapping between probe IDs and gene symbols\n",
    "print(\"\\nCreating gene mapping dataframe...\")\n",
    "\n",
    "# First, filter out rows without gene assignments or with placeholder assignments\n",
    "gene_annotation_filtered = gene_annotation[~gene_annotation['gene_assignment'].isin(['---', 'nan', ''])]\n",
    "gene_annotation_filtered = gene_annotation_filtered.dropna(subset=['gene_assignment'])\n",
    "\n",
    "# Create a mapping dataframe with ID and Gene columns\n",
    "mapping_df = pd.DataFrame()\n",
    "mapping_df['ID'] = gene_annotation_filtered['ID']\n",
    "mapping_df['Gene'] = gene_annotation_filtered['gene_assignment']\n",
    "\n",
    "# Convert the mapping dataframe to the required format\n",
    "print(f\"Initial mapping dataframe shape: {mapping_df.shape}\")\n",
    "print(\"Sample of mapping dataframe before processing:\")\n",
    "print(mapping_df.head())\n",
    "\n",
    "# 3. Apply the gene mapping to convert probe-level measurements to gene-level expression\n",
    "print(\"\\nApplying gene mapping to convert probe-level expression to gene-level expression...\")\n",
    "gene_data = apply_gene_mapping(expression_df=gene_data, mapping_df=mapping_df)\n",
    "print(f\"Resulting gene expression dataframe shape: {gene_data.shape}\")\n",
    "print(\"First few gene symbols in gene expression data:\")\n",
    "print(list(gene_data.index[:10]))\n",
    "\n",
    "# Save the gene expression data to CSV\n",
    "gene_data.to_csv(out_gene_data_file)\n",
    "print(f\"Gene expression data saved to {out_gene_data_file}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "8fb64ea8",
   "metadata": {},
   "source": [
    "### Step 7: Data Normalization and Linking"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "cfe50180",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T07:36:10.449487Z",
     "iopub.status.busy": "2025-03-25T07:36:10.449353Z",
     "iopub.status.idle": "2025-03-25T07:36:21.740358Z",
     "shell.execute_reply": "2025-03-25T07:36:21.740014Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "Normalizing gene symbols using NCBI Gene database...\n",
      "After normalization: 18910 unique gene symbols\n",
      "Sample of normalized gene symbols: ['A1BG', 'A1BG-AS1', 'A1CF', 'A2M', 'A2ML1']\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Normalized gene data saved to ../../output/preprocess/Longevity/gene_data/GSE48264.csv\n",
      "\n",
      "Loading clinical data...\n",
      "Loaded clinical data with shape: (1, 108)\n",
      "\n",
      "Linking clinical and genetic data...\n",
      "Linked data shape: (108, 18911)\n",
      "\n",
      "Handling missing values in linked data...\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Data shape after handling missing values: (76, 18911)\n",
      "\n",
      "Evaluating trait and demographic feature bias...\n",
      "For the feature 'Longevity', the least common label is '0.0' with 12 occurrences. This represents 15.79% of the dataset.\n",
      "The distribution of the feature 'Longevity' in this dataset is fine.\n",
      "\n",
      "\n",
      "Saving linked data to ../../output/preprocess/Longevity/GSE48264.csv\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Linked data saved successfully!\n"
     ]
    }
   ],
   "source": [
    "# 1. Normalize gene symbols in the gene expression data\n",
    "print(\"\\nNormalizing gene symbols using NCBI Gene database...\")\n",
    "normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n",
    "print(f\"After normalization: {normalized_gene_data.shape[0]} unique gene symbols\")\n",
    "print(f\"Sample of normalized gene symbols: {normalized_gene_data.index[:5].tolist()}\")\n",
    "\n",
    "# Save the normalized gene data\n",
    "normalized_gene_data.to_csv(out_gene_data_file)\n",
    "print(f\"Normalized gene data saved to {out_gene_data_file}\")\n",
    "\n",
    "# 2. Load clinical data\n",
    "print(\"\\nLoading clinical data...\")\n",
    "try:\n",
    "    clinical_data = pd.read_csv(out_clinical_data_file, index_col=0)\n",
    "    print(f\"Loaded clinical data with shape: {clinical_data.shape}\")\n",
    "    is_trait_available = True\n",
    "except Exception as e:\n",
    "    print(f\"Error loading clinical data: {str(e)}\")\n",
    "    is_trait_available = False\n",
    "\n",
    "# 3. Link clinical and genetic data\n",
    "if is_trait_available and is_gene_available:\n",
    "    print(\"\\nLinking clinical and genetic data...\")\n",
    "    linked_data = geo_link_clinical_genetic_data(clinical_data, normalized_gene_data)\n",
    "    print(f\"Linked data shape: {linked_data.shape}\")\n",
    "    \n",
    "    # 4. Handle missing values\n",
    "    print(\"\\nHandling missing values in linked data...\")\n",
    "    linked_data = handle_missing_values(linked_data, trait)\n",
    "    print(f\"Data shape after handling missing values: {linked_data.shape}\")\n",
    "    \n",
    "    # 5. Determine if trait and demographic features are severely biased\n",
    "    print(\"\\nEvaluating trait and demographic feature bias...\")\n",
    "    is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)\n",
    "    \n",
    "    # 6. Final validation and saving\n",
    "    note = \"This dataset contains gene expression data from skeletal muscle biopsies of elderly men (age ~70) with longevity as the trait of interest, determined by survival status over a 20-year follow-up period.\"\n",
    "    \n",
    "    is_usable = validate_and_save_cohort_info(\n",
    "        is_final=True,\n",
    "        cohort=cohort,\n",
    "        info_path=json_path,\n",
    "        is_gene_available=is_gene_available,\n",
    "        is_trait_available=is_trait_available,\n",
    "        is_biased=is_biased,\n",
    "        df=linked_data,\n",
    "        note=note\n",
    "    )\n",
    "    \n",
    "    # Save the linked data if it's usable\n",
    "    if is_usable:\n",
    "        print(f\"\\nSaving linked data to {out_data_file}\")\n",
    "        os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
    "        linked_data.to_csv(out_data_file)\n",
    "        print(f\"Linked data saved successfully!\")\n",
    "    else:\n",
    "        print(f\"\\nDataset not usable for {trait} association studies due to bias or quality issues.\")\n",
    "else:\n",
    "    print(\"\\nCannot create linked data: missing clinical or gene data\")\n",
    "    # Set up dummy linked_data for validation\n",
    "    linked_data = pd.DataFrame()\n",
    "    is_biased = True\n",
    "    \n",
    "    note = f\"Dataset contains {'gene expression data' if is_gene_available else 'no gene data'} but {'lacks' if not is_trait_available else 'has'} clinical information for {trait}.\"\n",
    "    \n",
    "    is_usable = validate_and_save_cohort_info(\n",
    "        is_final=True,\n",
    "        cohort=cohort,\n",
    "        info_path=json_path,\n",
    "        is_gene_available=is_gene_available,\n",
    "        is_trait_available=is_trait_available,\n",
    "        is_biased=is_biased,\n",
    "        df=linked_data,\n",
    "        note=note\n",
    "    )\n",
    "    \n",
    "    print(f\"\\nDataset usability for {trait} association studies: {is_usable}\")"
   ]
  }
 ],
 "metadata": {
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.16"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}