File size: 21,733 Bytes
53eb596
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "f434122e",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T07:55:01.376569Z",
     "iopub.status.busy": "2025-03-25T07:55:01.376303Z",
     "iopub.status.idle": "2025-03-25T07:55:01.542902Z",
     "shell.execute_reply": "2025-03-25T07:55:01.542550Z"
    }
   },
   "outputs": [],
   "source": [
    "import sys\n",
    "import os\n",
    "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
    "\n",
    "# Path Configuration\n",
    "from tools.preprocess import *\n",
    "\n",
    "# Processing context\n",
    "trait = \"Lupus_(Systemic_Lupus_Erythematosus)\"\n",
    "cohort = \"GSE148810\"\n",
    "\n",
    "# Input paths\n",
    "in_trait_dir = \"../../input/GEO/Lupus_(Systemic_Lupus_Erythematosus)\"\n",
    "in_cohort_dir = \"../../input/GEO/Lupus_(Systemic_Lupus_Erythematosus)/GSE148810\"\n",
    "\n",
    "# Output paths\n",
    "out_data_file = \"../../output/preprocess/Lupus_(Systemic_Lupus_Erythematosus)/GSE148810.csv\"\n",
    "out_gene_data_file = \"../../output/preprocess/Lupus_(Systemic_Lupus_Erythematosus)/gene_data/GSE148810.csv\"\n",
    "out_clinical_data_file = \"../../output/preprocess/Lupus_(Systemic_Lupus_Erythematosus)/clinical_data/GSE148810.csv\"\n",
    "json_path = \"../../output/preprocess/Lupus_(Systemic_Lupus_Erythematosus)/cohort_info.json\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "0ec60231",
   "metadata": {},
   "source": [
    "### Step 1: Initial Data Loading"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "d90f3b8c",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T07:55:01.544420Z",
     "iopub.status.busy": "2025-03-25T07:55:01.544265Z",
     "iopub.status.idle": "2025-03-25T07:55:01.632339Z",
     "shell.execute_reply": "2025-03-25T07:55:01.632018Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Background Information:\n",
      "!Series_title\t\"Gene expression of skin biopsie samples from juvenile myositis (JM) and childhood-onset lupus (cSLE).\"\n",
      "!Series_summary\t\"Skin inflammaton heralds systemic disease in juvenile myositis (JM), yet we lack an understanding of pathogenic mechanisms driving skin inflammation in JM. The goal of this study is to define cutaneous gene expression signatures in JM and identify key genes and pathways that differentiate skin disease in JM from childhood-onset SLE (cSLE).\"\n",
      "!Series_overall_design\t\"Formalin formalin-fixed paraffin-embedded (FFPE) skin biopsy samples from JM, cSLE, and control (HC) patients were used to perform Affymetrix ST 2.1 microarray analysis and determine differentially expressed genes (DEGs; q-value ≤ 5%) between patient groups.\"\n",
      "Sample Characteristics Dictionary:\n",
      "{0: ['tissue: Skin biopsy'], 1: ['disease: JM Lesional skin', 'disease: JM Non-lesional skin', 'disease: cSLE skin lesion', 'disease: Normal skin']}\n"
     ]
    }
   ],
   "source": [
    "from tools.preprocess import *\n",
    "# 1. Identify the paths to the SOFT file and the matrix file\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. Read the matrix file to obtain background information and sample characteristics data\n",
    "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
    "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
    "background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
    "\n",
    "# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
    "sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
    "\n",
    "# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
    "print(\"Background Information:\")\n",
    "print(background_info)\n",
    "print(\"Sample Characteristics Dictionary:\")\n",
    "print(sample_characteristics_dict)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "3af8cde5",
   "metadata": {},
   "source": [
    "### Step 2: Dataset Analysis and Clinical Feature Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "ca41a1a0",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T07:55:01.633542Z",
     "iopub.status.busy": "2025-03-25T07:55:01.633427Z",
     "iopub.status.idle": "2025-03-25T07:55:01.638225Z",
     "shell.execute_reply": "2025-03-25T07:55:01.637921Z"
    }
   },
   "outputs": [],
   "source": [
    "import os\n",
    "import json\n",
    "import pandas as pd\n",
    "from typing import Optional, Callable, Dict, Any\n",
    "\n",
    "# 1. Gene Expression Data Availability\n",
    "# Based on the background information, this dataset appears to contain gene expression data\n",
    "# from microarray analysis (Affymetrix ST 2.1)\n",
    "is_gene_available = True\n",
    "\n",
    "# 2. Variable Availability and Data Type Conversion\n",
    "# 2.1 Data Availability\n",
    "# For trait: Looking at the sample characteristics dictionary, disease information is in row 1\n",
    "trait_row = 1\n",
    "\n",
    "# Age information is not available in the sample characteristics\n",
    "age_row = None\n",
    "\n",
    "# Gender information is not available in the sample characteristics\n",
    "gender_row = None\n",
    "\n",
    "# 2.2 Data Type Conversion Functions\n",
    "def convert_trait(value: str) -> Optional[int]:\n",
    "    \"\"\"Convert trait value to binary (1 for SLE, 0 for others)\"\"\"\n",
    "    if value is None:\n",
    "        return None\n",
    "    \n",
    "    # Extract the value part after the colon if present\n",
    "    if \":\" in value:\n",
    "        value = value.split(\":\", 1)[1].strip()\n",
    "    \n",
    "    # Check if the value indicates SLE (Systemic Lupus Erythematosus)\n",
    "    if \"cSLE\" in value:\n",
    "        return 1  # SLE positive\n",
    "    else:\n",
    "        return 0  # Not SLE (JM or Normal)\n",
    "\n",
    "def convert_age(value: str) -> Optional[float]:\n",
    "    \"\"\"Convert age value to continuous numeric\"\"\"\n",
    "    # Not applicable as age data is not available\n",
    "    return None\n",
    "\n",
    "def convert_gender(value: str) -> Optional[int]:\n",
    "    \"\"\"Convert gender value to binary (0 for female, 1 for male)\"\"\"\n",
    "    # Not applicable as gender data is not available\n",
    "    return None\n",
    "\n",
    "# 3. Save Metadata\n",
    "# Determine trait data availability\n",
    "is_trait_available = trait_row is not None\n",
    "\n",
    "# Validate and save cohort info for initial filtering\n",
    "validate_and_save_cohort_info(\n",
    "    is_final=False,\n",
    "    cohort=cohort,\n",
    "    info_path=json_path,\n",
    "    is_gene_available=is_gene_available,\n",
    "    is_trait_available=is_trait_available\n",
    ")\n",
    "\n",
    "# 4. Clinical Feature Extraction\n",
    "# Since trait_row is not None, we need to extract clinical features\n",
    "if trait_row is not None:\n",
    "    # Load the clinical data\n",
    "    clinical_data_path = os.path.join(in_cohort_dir, \"clinical_data.csv\")\n",
    "    if os.path.exists(clinical_data_path):\n",
    "        clinical_data = pd.read_csv(clinical_data_path)\n",
    "        \n",
    "        # Extract clinical features\n",
    "        selected_clinical_df = geo_select_clinical_features(\n",
    "            clinical_df=clinical_data,\n",
    "            trait=trait,\n",
    "            trait_row=trait_row,\n",
    "            convert_trait=convert_trait,\n",
    "            age_row=age_row,\n",
    "            convert_age=convert_age,\n",
    "            gender_row=gender_row,\n",
    "            convert_gender=convert_gender\n",
    "        )\n",
    "        \n",
    "        # Preview the extracted features\n",
    "        preview = preview_df(selected_clinical_df)\n",
    "        print(\"Preview of selected clinical features:\")\n",
    "        print(preview)\n",
    "        \n",
    "        # Create directory if it doesn't exist\n",
    "        os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "        \n",
    "        # Save the extracted features\n",
    "        selected_clinical_df.to_csv(out_clinical_data_file, index=False)\n",
    "        print(f\"Clinical data saved to {out_clinical_data_file}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "68bf01bf",
   "metadata": {},
   "source": [
    "### Step 3: Gene Data Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "3484b945",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T07:55:01.639317Z",
     "iopub.status.busy": "2025-03-25T07:55:01.639205Z",
     "iopub.status.idle": "2025-03-25T07:55:01.765413Z",
     "shell.execute_reply": "2025-03-25T07:55:01.765020Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "This appears to be a SuperSeries. Looking at the SOFT file to find potential subseries:\n",
      "No subseries references found in the first 1000 lines of the SOFT file.\n",
      "\n",
      "Gene data extraction result:\n",
      "Number of rows: 29635\n",
      "First 20 gene/probe identifiers:\n",
      "Index(['100009613_at', '100009676_at', '10000_at', '10001_at', '10002_at',\n",
      "       '100033411_at', '100033413_at', '100033422_at', '100033423_at',\n",
      "       '100033424_at', '100033425_at', '100033426_at', '100033427_at',\n",
      "       '100033428_at', '100033430_at', '100033431_at', '100033432_at',\n",
      "       '100033434_at', '100033435_at', '100033436_at'],\n",
      "      dtype='object', name='ID')\n"
     ]
    }
   ],
   "source": [
    "# 1. First get the path to the soft and matrix files\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. Looking more carefully at the background information\n",
    "# This is a SuperSeries which doesn't contain direct gene expression data\n",
    "# Need to investigate the soft file to find the subseries\n",
    "print(\"This appears to be a SuperSeries. Looking at the SOFT file to find potential subseries:\")\n",
    "\n",
    "# Open the SOFT file to try to identify subseries\n",
    "with gzip.open(soft_file, 'rt') as f:\n",
    "    subseries_lines = []\n",
    "    for i, line in enumerate(f):\n",
    "        if 'Series_relation' in line and 'SuperSeries of' in line:\n",
    "            subseries_lines.append(line.strip())\n",
    "        if i > 1000:  # Limit search to first 1000 lines\n",
    "            break\n",
    "\n",
    "# Display the subseries found\n",
    "if subseries_lines:\n",
    "    print(\"Found potential subseries references:\")\n",
    "    for line in subseries_lines:\n",
    "        print(line)\n",
    "else:\n",
    "    print(\"No subseries references found in the first 1000 lines of the SOFT file.\")\n",
    "\n",
    "# Despite trying to extract gene data, we expect it might fail because this is a SuperSeries\n",
    "try:\n",
    "    gene_data = get_genetic_data(matrix_file)\n",
    "    print(\"\\nGene data extraction result:\")\n",
    "    print(\"Number of rows:\", len(gene_data))\n",
    "    print(\"First 20 gene/probe identifiers:\")\n",
    "    print(gene_data.index[:20])\n",
    "except Exception as e:\n",
    "    print(f\"Error extracting gene data: {e}\")\n",
    "    print(\"This confirms the dataset is a SuperSeries without direct gene expression data.\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "4424abe6",
   "metadata": {},
   "source": [
    "### Step 4: Gene Identifier Review"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "83115426",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T07:55:01.766711Z",
     "iopub.status.busy": "2025-03-25T07:55:01.766586Z",
     "iopub.status.idle": "2025-03-25T07:55:01.768533Z",
     "shell.execute_reply": "2025-03-25T07:55:01.768238Z"
    }
   },
   "outputs": [],
   "source": [
    "# The gene identifiers consist of numbers followed by \"_at\" suffix, which is typical for Affymetrix microarray probes\n",
    "# These are not standard human gene symbols and need to be mapped to proper gene symbols\n",
    "\n",
    "requires_gene_mapping = True\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "5da3e492",
   "metadata": {},
   "source": [
    "### Step 5: Gene Annotation"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "99da98a1",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T07:55:01.769689Z",
     "iopub.status.busy": "2025-03-25T07:55:01.769573Z",
     "iopub.status.idle": "2025-03-25T07:55:02.792213Z",
     "shell.execute_reply": "2025-03-25T07:55:02.791809Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Gene annotation preview:\n",
      "{'ID': ['1_at', '10_at', '100_at', '1000_at', '10000_at'], 'SPOT_ID': ['1', '10', '100', '1000', '10000'], 'DESCRIPTION': ['alpha-1-B glycoprotein', 'N-acetyltransferase 2', 'adenosine deaminase', 'cadherin 2', 'AKT serine/threonine kinase 3'], 'ORF': ['A1BG', 'NAT2', 'ADA', 'CDH2', 'AKT3']}\n"
     ]
    }
   ],
   "source": [
    "# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.\n",
    "gene_annotation = get_gene_annotation(soft_file)\n",
    "\n",
    "# 2. Use the 'preview_df' function from the library to preview the data and print out the results.\n",
    "print(\"Gene annotation preview:\")\n",
    "print(preview_df(gene_annotation))\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "94df63f2",
   "metadata": {},
   "source": [
    "### Step 6: Gene Identifier Mapping"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "979b7584",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T07:55:02.793643Z",
     "iopub.status.busy": "2025-03-25T07:55:02.793508Z",
     "iopub.status.idle": "2025-03-25T07:55:02.916704Z",
     "shell.execute_reply": "2025-03-25T07:55:02.916286Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Gene mapping preview:\n",
      "{'ID': ['1_at', '10_at', '100_at', '1000_at', '10000_at'], 'Gene': ['A1BG', 'NAT2', 'ADA', 'CDH2', 'AKT3']}\n",
      "\n",
      "Gene expression data after mapping:\n",
      "Number of genes: 23124\n",
      "First few genes:\n",
      "Index(['A1BG', 'A1BG-AS1', 'A1CF', 'A2M', 'A2M-AS1', 'A2ML1', 'A2MP1',\n",
      "       'A4GALT', 'A4GNT', 'AA06'],\n",
      "      dtype='object', name='Gene')\n"
     ]
    }
   ],
   "source": [
    "# 1. Identify columns for gene mapping \n",
    "# From the preview, it seems 'ID' contains probe identifiers and 'ORF' contains gene symbols\n",
    "probe_col = 'ID'  # Column containing probe identifiers\n",
    "gene_col = 'ORF'  # Column containing gene symbols\n",
    "\n",
    "# 2. Extract gene mapping dataframe\n",
    "gene_mapping = get_gene_mapping(gene_annotation, probe_col, gene_col)\n",
    "print(\"Gene mapping preview:\")\n",
    "print(preview_df(gene_mapping))\n",
    "\n",
    "# 3. Apply gene mapping to convert probe-level measurements to gene-level expression data\n",
    "# The library function 'apply_gene_mapping' will handle the many-to-many relationship\n",
    "gene_data = apply_gene_mapping(gene_data, gene_mapping)\n",
    "print(\"\\nGene expression data after mapping:\")\n",
    "print(f\"Number of genes: {len(gene_data)}\")\n",
    "print(\"First few genes:\")\n",
    "print(gene_data.index[:10])\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "608ab528",
   "metadata": {},
   "source": [
    "### Step 7: Data Normalization and Linking"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "40ae519f",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T07:55:02.918097Z",
     "iopub.status.busy": "2025-03-25T07:55:02.917963Z",
     "iopub.status.idle": "2025-03-25T07:55:13.749013Z",
     "shell.execute_reply": "2025-03-25T07:55:13.748611Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Top 10 gene indices before normalization: ['A1BG', 'A1BG-AS1', 'A1CF', 'A2M', 'A2M-AS1', 'A2ML1', 'A2MP1', 'A4GALT', 'A4GNT', 'AA06']\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Top 10 gene indices after normalization: ['A1BG', 'A1BG-AS1', 'A1CF', 'A2M', 'A2M-AS1', 'A2ML1', 'A2MP1', 'A4GALT', 'A4GNT', 'AA06']\n",
      "Shape of normalized gene data: (22856, 30)\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Saved normalized gene data to ../../output/preprocess/Lupus_(Systemic_Lupus_Erythematosus)/gene_data/GSE148810.csv\n",
      "Saved clinical data to ../../output/preprocess/Lupus_(Systemic_Lupus_Erythematosus)/clinical_data/GSE148810.csv\n",
      "Shape of linked data: (30, 22857)\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Shape of linked data after handling missing values: (30, 22857)\n",
      "For the feature 'Lupus_(Systemic_Lupus_Erythematosus)', the least common label is '1.0' with 7 occurrences. This represents 23.33% of the dataset.\n",
      "The distribution of the feature 'Lupus_(Systemic_Lupus_Erythematosus)' in this dataset is fine.\n",
      "\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Saved processed linked data to ../../output/preprocess/Lupus_(Systemic_Lupus_Erythematosus)/GSE148810.csv\n"
     ]
    }
   ],
   "source": [
    "# 1. Normalize gene symbols in the gene expression data\n",
    "print(f\"Top 10 gene indices before normalization: {gene_data.index[:10].tolist()}\")\n",
    "normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n",
    "print(f\"Top 10 gene indices after normalization: {normalized_gene_data.index[:10].tolist()}\")\n",
    "print(f\"Shape of normalized gene data: {normalized_gene_data.shape}\")\n",
    "\n",
    "# Create directory for gene data file if it doesn't exist\n",
    "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
    "# Save the normalized gene data\n",
    "normalized_gene_data.to_csv(out_gene_data_file)\n",
    "print(f\"Saved normalized gene data to {out_gene_data_file}\")\n",
    "\n",
    "# 2. Extract clinical features using the clinical data from step 1\n",
    "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
    "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
    "background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
    "\n",
    "# Extract clinical features using the convert_trait function from step 2\n",
    "selected_clinical_df = geo_select_clinical_features(\n",
    "    clinical_df=clinical_data,\n",
    "    trait=trait,\n",
    "    trait_row=1,  # From step 2\n",
    "    convert_trait=convert_trait,\n",
    "    age_row=None,\n",
    "    convert_age=None,\n",
    "    gender_row=None,\n",
    "    convert_gender=None\n",
    ")\n",
    "\n",
    "# Save clinical data\n",
    "os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "selected_clinical_df.to_csv(out_clinical_data_file)\n",
    "print(f\"Saved clinical data to {out_clinical_data_file}\")\n",
    "\n",
    "# 3. Link clinical and genetic data\n",
    "linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)\n",
    "print(f\"Shape of linked data: {linked_data.shape}\")\n",
    "\n",
    "# 4. Handle missing values in the linked data\n",
    "linked_data = handle_missing_values(linked_data, trait)\n",
    "print(f\"Shape of linked data after handling missing values: {linked_data.shape}\")\n",
    "\n",
    "# 5. Determine if the trait and demographic features are biased\n",
    "is_trait_biased, unbiased_linked_data = judge_and_remove_biased_features(linked_data, trait)\n",
    "\n",
    "# 6. Validate the dataset and save cohort information\n",
    "is_usable = validate_and_save_cohort_info(\n",
    "    is_final=True,\n",
    "    cohort=cohort,\n",
    "    info_path=json_path,\n",
    "    is_gene_available=True,\n",
    "    is_trait_available=True,\n",
    "    is_biased=is_trait_biased,\n",
    "    df=unbiased_linked_data,\n",
    "    note=\"Dataset contains gene expression data from juvenile myositis (JM) and childhood-onset lupus (cSLE) skin biopsies.\"\n",
    ")\n",
    "\n",
    "# 7. Save the linked data if it's usable\n",
    "if is_usable:\n",
    "    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
    "    unbiased_linked_data.to_csv(out_data_file)\n",
    "    print(f\"Saved processed linked data to {out_data_file}\")\n",
    "else:\n",
    "    print(\"Dataset validation failed. Final linked data not saved.\")"
   ]
  }
 ],
 "metadata": {
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.16"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}