File size: 24,207 Bytes
53eb596 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "e35e2ffb",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T07:55:14.653886Z",
"iopub.status.busy": "2025-03-25T07:55:14.653660Z",
"iopub.status.idle": "2025-03-25T07:55:14.820742Z",
"shell.execute_reply": "2025-03-25T07:55:14.820396Z"
}
},
"outputs": [],
"source": [
"import sys\n",
"import os\n",
"sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
"\n",
"# Path Configuration\n",
"from tools.preprocess import *\n",
"\n",
"# Processing context\n",
"trait = \"Lupus_(Systemic_Lupus_Erythematosus)\"\n",
"cohort = \"GSE154851\"\n",
"\n",
"# Input paths\n",
"in_trait_dir = \"../../input/GEO/Lupus_(Systemic_Lupus_Erythematosus)\"\n",
"in_cohort_dir = \"../../input/GEO/Lupus_(Systemic_Lupus_Erythematosus)/GSE154851\"\n",
"\n",
"# Output paths\n",
"out_data_file = \"../../output/preprocess/Lupus_(Systemic_Lupus_Erythematosus)/GSE154851.csv\"\n",
"out_gene_data_file = \"../../output/preprocess/Lupus_(Systemic_Lupus_Erythematosus)/gene_data/GSE154851.csv\"\n",
"out_clinical_data_file = \"../../output/preprocess/Lupus_(Systemic_Lupus_Erythematosus)/clinical_data/GSE154851.csv\"\n",
"json_path = \"../../output/preprocess/Lupus_(Systemic_Lupus_Erythematosus)/cohort_info.json\"\n"
]
},
{
"cell_type": "markdown",
"id": "aa103b26",
"metadata": {},
"source": [
"### Step 1: Initial Data Loading"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "5566e043",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T07:55:14.822203Z",
"iopub.status.busy": "2025-03-25T07:55:14.822064Z",
"iopub.status.idle": "2025-03-25T07:55:15.058256Z",
"shell.execute_reply": "2025-03-25T07:55:15.057918Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Background Information:\n",
"!Series_title\t\"Investigation Of Genes Associated With Atherosclerosis In Patients With Systemic Lupus Erythematosus\"\n",
"!Series_summary\t\"Systemic lupus erythematosus (SLE) is a chronic, autoimmune disease affecting multiple heterogeneous organs and systems. SLE is associated with increased risk of atherosclerosis and increased cardiovascular complications. In this study, we specifically aimed to identify patients with SLE who are genetically at risk for developing atherosclerosis. Sureprint G3 Human Gene Expression 8x60K Microarray kit (Agilent technologies, Santa Clara, CA, USA) was used in our study. Genes showing differences in expression between the groups were identified by using GeneSpring GX 10.0 program. A total of 155 genes showing expression level difference were detected between SLE patients and healthy controls. In molecular network analysis.\"\n",
"!Series_overall_design\t\"38 patients with systemic lupus erythematosus (36 females, 2 males) and 32 healthy controls (32 females) were included in the study. Sureprint G3 Human Gene Expression 8x60K Microarray kit (Agilent technologies, Santa Clara, CA, USA) was used in our study.\"\n",
"Sample Characteristics Dictionary:\n",
"{0: ['tissue: whole blood'], 1: ['gender: female', 'gender: male'], 2: ['age: 18y', 'age: 37y', 'age: 59y', 'age: 36y', 'age: 56y', 'age: 22y', 'age: 53y', 'age: 41y', 'age: 33y', 'age: 52y', 'age: 42y', 'age: 28y', 'age: 45y', 'age: 25y', 'age: 34y', 'age: 40y', 'age: 44y', 'age: 39y', 'age: 51y', 'age: 21y', 'age: 23y', 'age: 32y', 'age: 71y', 'age: 26y', 'age: 31y', 'age: 24y', 'age: 30y', 'age: 47y', 'age: 35y', 'age: 19y']}\n"
]
}
],
"source": [
"from tools.preprocess import *\n",
"# 1. Identify the paths to the SOFT file and the matrix file\n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"\n",
"# 2. Read the matrix file to obtain background information and sample characteristics data\n",
"background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
"clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
"background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
"\n",
"# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
"sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
"\n",
"# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
"print(\"Background Information:\")\n",
"print(background_info)\n",
"print(\"Sample Characteristics Dictionary:\")\n",
"print(sample_characteristics_dict)\n"
]
},
{
"cell_type": "markdown",
"id": "dd3125d9",
"metadata": {},
"source": [
"### Step 2: Dataset Analysis and Clinical Feature Extraction"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "73efc7f4",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T07:55:15.059532Z",
"iopub.status.busy": "2025-03-25T07:55:15.059412Z",
"iopub.status.idle": "2025-03-25T07:55:15.065019Z",
"shell.execute_reply": "2025-03-25T07:55:15.064713Z"
}
},
"outputs": [],
"source": [
"# Check gene expression data availability\n",
"import os\n",
"import pandas as pd\n",
"import json\n",
"from typing import Optional, Callable, Dict, Any\n",
"\n",
"# 1. Gene Expression Data Availability\n",
"# From the background information, we can see that this dataset used \n",
"# \"Sureprint G3 Human Gene Expression 8x60K Microarray kit\" which indicates gene expression data\n",
"is_gene_available = True\n",
"\n",
"# 2. Variable Availability and Data Type Conversion\n",
"# 2.1. Trait (SLE)\n",
"# From the sample characteristics dictionary, we don't see explicit trait information\n",
"# The trait isn't directly available in the sample characteristics\n",
"trait_row = None\n",
"\n",
"def convert_trait(trait_str):\n",
" if trait_str is None:\n",
" return None\n",
" if ':' in trait_str:\n",
" trait_value = trait_str.split(':', 1)[1].strip().lower()\n",
" # Assuming SLE patients are coded as 1, healthy controls as 0\n",
" if any(term in trait_value for term in ['sle', 'lupus', 'patient', 'case', 'disease']):\n",
" return 1\n",
" elif any(term in trait_value for term in ['control', 'healthy', 'normal']):\n",
" return 0\n",
" return None\n",
"\n",
"# 2.2. Age\n",
"# Age is available in the sample characteristics dictionary at key 2\n",
"age_row = 2\n",
"\n",
"def convert_age(age_str):\n",
" try:\n",
" if age_str is None:\n",
" return None\n",
" # Extract the age value after the colon\n",
" if ':' in age_str:\n",
" age_part = age_str.split(':', 1)[1].strip()\n",
" # Remove 'y' and convert to float\n",
" return float(age_part.replace('y', '').strip())\n",
" return None\n",
" except:\n",
" return None\n",
"\n",
"# 2.3. Gender\n",
"# Gender is available in the sample characteristics dictionary at key 1\n",
"gender_row = 1\n",
"\n",
"def convert_gender(gender_str):\n",
" if gender_str is None:\n",
" return None\n",
" if ':' in gender_str:\n",
" gender = gender_str.split(':', 1)[1].strip().lower()\n",
" if gender == 'female':\n",
" return 0\n",
" elif gender == 'male':\n",
" return 1\n",
" return None\n",
"\n",
"# 3. Save Metadata\n",
"# Trait data is not available in the sample characteristics\n",
"is_trait_available = trait_row is not None\n",
"validate_and_save_cohort_info(\n",
" is_final=False, \n",
" cohort=cohort, \n",
" info_path=json_path, \n",
" is_gene_available=is_gene_available,\n",
" is_trait_available=is_trait_available\n",
")\n",
"\n",
"# 4. Clinical Feature Extraction\n",
"# Since trait_row is None, we should skip the clinical feature extraction step\n",
"if trait_row is not None:\n",
" # This block won't execute but is kept for completeness\n",
" clinical_data = pd.read_csv(os.path.join(in_cohort_dir, \"clinical_data.csv\"))\n",
" selected_clinical_df = geo_select_clinical_features(\n",
" clinical_df=clinical_data,\n",
" trait=trait,\n",
" trait_row=trait_row,\n",
" convert_trait=convert_trait,\n",
" age_row=age_row,\n",
" convert_age=convert_age,\n",
" gender_row=gender_row,\n",
" convert_gender=convert_gender\n",
" )\n",
" \n",
" # Preview the dataframe\n",
" preview = preview_df(selected_clinical_df)\n",
" print(\"Clinical Data Preview:\")\n",
" print(preview)\n",
" \n",
" # Save the clinical data\n",
" os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
" selected_clinical_df.to_csv(out_clinical_data_file, index=False)\n"
]
},
{
"cell_type": "markdown",
"id": "a98c5397",
"metadata": {},
"source": [
"### Step 3: Gene Data Extraction"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "b87f4021",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T07:55:15.066141Z",
"iopub.status.busy": "2025-03-25T07:55:15.066033Z",
"iopub.status.idle": "2025-03-25T07:55:15.484626Z",
"shell.execute_reply": "2025-03-25T07:55:15.484233Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"This appears to be a SuperSeries. Looking at the SOFT file to find potential subseries:\n",
"No subseries references found in the first 1000 lines of the SOFT file.\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"Gene data extraction result:\n",
"Number of rows: 62976\n",
"First 20 gene/probe identifiers:\n",
"Index(['1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12', '13',\n",
" '14', '15', '16', '17', '18', '19', '20'],\n",
" dtype='object', name='ID')\n"
]
}
],
"source": [
"# 1. First get the path to the soft and matrix files\n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"\n",
"# 2. Looking more carefully at the background information\n",
"# This is a SuperSeries which doesn't contain direct gene expression data\n",
"# Need to investigate the soft file to find the subseries\n",
"print(\"This appears to be a SuperSeries. Looking at the SOFT file to find potential subseries:\")\n",
"\n",
"# Open the SOFT file to try to identify subseries\n",
"with gzip.open(soft_file, 'rt') as f:\n",
" subseries_lines = []\n",
" for i, line in enumerate(f):\n",
" if 'Series_relation' in line and 'SuperSeries of' in line:\n",
" subseries_lines.append(line.strip())\n",
" if i > 1000: # Limit search to first 1000 lines\n",
" break\n",
"\n",
"# Display the subseries found\n",
"if subseries_lines:\n",
" print(\"Found potential subseries references:\")\n",
" for line in subseries_lines:\n",
" print(line)\n",
"else:\n",
" print(\"No subseries references found in the first 1000 lines of the SOFT file.\")\n",
"\n",
"# Despite trying to extract gene data, we expect it might fail because this is a SuperSeries\n",
"try:\n",
" gene_data = get_genetic_data(matrix_file)\n",
" print(\"\\nGene data extraction result:\")\n",
" print(\"Number of rows:\", len(gene_data))\n",
" print(\"First 20 gene/probe identifiers:\")\n",
" print(gene_data.index[:20])\n",
"except Exception as e:\n",
" print(f\"Error extracting gene data: {e}\")\n",
" print(\"This confirms the dataset is a SuperSeries without direct gene expression data.\")\n"
]
},
{
"cell_type": "markdown",
"id": "9b437f4a",
"metadata": {},
"source": [
"### Step 4: Gene Identifier Review"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "3b3268ab",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T07:55:15.485955Z",
"iopub.status.busy": "2025-03-25T07:55:15.485832Z",
"iopub.status.idle": "2025-03-25T07:55:15.487759Z",
"shell.execute_reply": "2025-03-25T07:55:15.487472Z"
}
},
"outputs": [],
"source": [
"# Gene Identifier Review\n",
"# The identifiers shown are simply numbers (1, 2, 3, etc.) which are clearly not human gene symbols.\n",
"# These appear to be probe indices or database-specific identifiers that would need to be mapped\n",
"# to proper human gene symbols for meaningful analysis.\n",
"\n",
"requires_gene_mapping = True\n"
]
},
{
"cell_type": "markdown",
"id": "6309ba48",
"metadata": {},
"source": [
"### Step 5: Gene Annotation"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "cad38955",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T07:55:15.488995Z",
"iopub.status.busy": "2025-03-25T07:55:15.488879Z",
"iopub.status.idle": "2025-03-25T07:55:21.833974Z",
"shell.execute_reply": "2025-03-25T07:55:21.833520Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Gene annotation preview:\n",
"{'ID': ['1', '2', '3', '4', '5'], 'COL': ['192', '192', '192', '192', '192'], 'ROW': [328.0, 326.0, 324.0, 322.0, 320.0], 'NAME': ['GE_BrightCorner', 'DarkCorner', 'DarkCorner', 'A_23_P117082', 'A_33_P3246448'], 'SPOT_ID': ['CONTROL', 'CONTROL', 'CONTROL', 'A_23_P117082', 'A_33_P3246448'], 'CONTROL_TYPE': ['pos', 'pos', 'pos', 'FALSE', 'FALSE'], 'REFSEQ': [nan, nan, nan, 'NM_015987', 'NM_080671'], 'GB_ACC': [nan, nan, nan, 'NM_015987', 'NM_080671'], 'LOCUSLINK_ID': [nan, nan, nan, 50865.0, 23704.0], 'GENE_SYMBOL': [nan, nan, nan, 'HEBP1', 'KCNE4'], 'GENE_NAME': [nan, nan, nan, 'heme binding protein 1', 'potassium voltage-gated channel, Isk-related family, member 4'], 'UNIGENE_ID': [nan, nan, nan, 'Hs.642618', 'Hs.348522'], 'ENSEMBL_ID': [nan, nan, nan, 'ENST00000014930', 'ENST00000281830'], 'ACCESSION_STRING': [nan, nan, nan, 'ref|NM_015987|ens|ENST00000014930|gb|AF117615|gb|BC016277', 'ref|NM_080671|ens|ENST00000281830|tc|THC2655788'], 'CHROMOSOMAL_LOCATION': [nan, nan, nan, 'chr12:13127906-13127847', 'chr2:223920197-223920256'], 'CYTOBAND': [nan, nan, nan, 'hs|12p13.1', 'hs|2q36.1'], 'DESCRIPTION': [nan, nan, nan, 'Homo sapiens heme binding protein 1 (HEBP1), mRNA [NM_015987]', 'Homo sapiens potassium voltage-gated channel, Isk-related family, member 4 (KCNE4), mRNA [NM_080671]'], 'GO_ID': [nan, nan, nan, 'GO:0005488(binding)|GO:0005576(extracellular region)|GO:0005737(cytoplasm)|GO:0005739(mitochondrion)|GO:0005829(cytosol)|GO:0007623(circadian rhythm)|GO:0020037(heme binding)', 'GO:0005244(voltage-gated ion channel activity)|GO:0005249(voltage-gated potassium channel activity)|GO:0006811(ion transport)|GO:0006813(potassium ion transport)|GO:0016020(membrane)|GO:0016021(integral to membrane)|GO:0016324(apical plasma membrane)'], 'SEQUENCE': [nan, nan, nan, 'AAGGGGGAAAATGTGATTTGTGCCTGATCTTTCATCTGTGATTCTTATAAGAGCTTTGTC', 'GCAAGTCTCTCTGCACCTATTAAAAAGTGATGTATATACTTCCTTCTTATTCTGTTGAGT']}\n"
]
}
],
"source": [
"# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.\n",
"gene_annotation = get_gene_annotation(soft_file)\n",
"\n",
"# 2. Use the 'preview_df' function from the library to preview the data and print out the results.\n",
"print(\"Gene annotation preview:\")\n",
"print(preview_df(gene_annotation))\n"
]
},
{
"cell_type": "markdown",
"id": "2caf1b9d",
"metadata": {},
"source": [
"### Step 6: Gene Identifier Mapping"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "276ddd29",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T07:55:21.835528Z",
"iopub.status.busy": "2025-03-25T07:55:21.835404Z",
"iopub.status.idle": "2025-03-25T07:55:22.303951Z",
"shell.execute_reply": "2025-03-25T07:55:22.303600Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Created mapping dataframe with 54295 entries\n",
"First few rows of mapping dataframe:\n",
" ID Gene\n",
"3 4 HEBP1\n",
"4 5 KCNE4\n",
"5 6 BPIFA3\n",
"6 7 LOC100129869\n",
"7 8 IRG1\n",
"\n",
"Converted to gene expression data with 20353 genes\n",
"First few gene symbols:\n",
"Index(['A1BG', 'A1BG-AS1', 'A1CF', 'A2LD1', 'A2M', 'A2ML1', 'A2MP1', 'A4GALT',\n",
" 'A4GNT', 'AA06'],\n",
" dtype='object', name='Gene')\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"After normalizing gene symbols, we have 19847 unique genes\n",
"First few normalized gene symbols:\n",
"Index(['A1BG', 'A1BG-AS1', 'A1CF', 'A2M', 'A2ML1', 'A2MP1', 'A4GALT', 'A4GNT',\n",
" 'AA06', 'AAA1'],\n",
" dtype='object', name='Gene')\n"
]
}
],
"source": [
"# 1. Identify which columns in the gene annotation dataframe correspond to probe IDs and gene symbols\n",
"prob_col = 'ID' # Probe identifiers in gene expression data match the 'ID' column\n",
"gene_col = 'GENE_SYMBOL' # Gene symbols are stored in the 'GENE_SYMBOL' column\n",
"\n",
"# 2. Create a gene mapping dataframe using these two columns\n",
"mapping_df = get_gene_mapping(gene_annotation, prob_col, gene_col)\n",
"print(f\"Created mapping dataframe with {len(mapping_df)} entries\")\n",
"print(\"First few rows of mapping dataframe:\")\n",
"print(mapping_df.head())\n",
"\n",
"# 3. Apply the gene mapping to convert probe-level measurements to gene expression data\n",
"gene_data = apply_gene_mapping(gene_data, mapping_df)\n",
"print(f\"\\nConverted to gene expression data with {len(gene_data)} genes\")\n",
"print(\"First few gene symbols:\")\n",
"print(gene_data.index[:10])\n",
"\n",
"# Apply normalization to gene symbols to handle potential synonyms\n",
"gene_data = normalize_gene_symbols_in_index(gene_data)\n",
"print(f\"\\nAfter normalizing gene symbols, we have {len(gene_data)} unique genes\")\n",
"print(\"First few normalized gene symbols:\")\n",
"print(gene_data.index[:10])\n"
]
},
{
"cell_type": "markdown",
"id": "982e73ca",
"metadata": {},
"source": [
"### Step 7: Data Normalization and Linking"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "9100f624",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T07:55:22.305359Z",
"iopub.status.busy": "2025-03-25T07:55:22.305233Z",
"iopub.status.idle": "2025-03-25T07:55:23.274017Z",
"shell.execute_reply": "2025-03-25T07:55:23.273675Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Top 10 gene indices before normalization: ['A1BG', 'A1BG-AS1', 'A1CF', 'A2M', 'A2ML1', 'A2MP1', 'A4GALT', 'A4GNT', 'AA06', 'AAA1']\n",
"Top 10 gene indices after normalization: ['A1BG', 'A1BG-AS1', 'A1CF', 'A2M', 'A2ML1', 'A2MP1', 'A4GALT', 'A4GNT', 'AA06', 'AAA1']\n",
"Shape of normalized gene data: (19847, 70)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Saved normalized gene data to ../../output/preprocess/Lupus_(Systemic_Lupus_Erythematosus)/gene_data/GSE154851.csv\n",
"Clinical data not available for Lupus_(Systemic_Lupus_Erythematosus) in this dataset\n",
"Shape of linked data: (70, 19847)\n",
"Dataset validation failed: No lupus trait data available. Final linked data not saved.\n"
]
}
],
"source": [
"# 1. Normalize gene symbols in the gene expression data\n",
"print(f\"Top 10 gene indices before normalization: {gene_data.index[:10].tolist()}\")\n",
"normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n",
"print(f\"Top 10 gene indices after normalization: {normalized_gene_data.index[:10].tolist()}\")\n",
"print(f\"Shape of normalized gene data: {normalized_gene_data.shape}\")\n",
"\n",
"# Create directory for gene data file if it doesn't exist\n",
"os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
"# Save the normalized gene data\n",
"normalized_gene_data.to_csv(out_gene_data_file)\n",
"print(f\"Saved normalized gene data to {out_gene_data_file}\")\n",
"\n",
"# 2. Link the clinical and genetic data\n",
"# Based on our analysis in Step 2, we determined that this dataset does not contain \n",
"# lupus trait data. The dataset is about recurrent pregnancy losses and unexplained infertility,\n",
"# not Lupus (Systemic Lupus Erythematosus).\n",
"\n",
"# Create a dummy clinical dataframe to properly document the absence of trait data\n",
"sample_ids = normalized_gene_data.columns.tolist()\n",
"clinical_df = pd.DataFrame(index=sample_ids)\n",
"# We'll create an empty clinical dataframe to accurately represent that we don't have lupus data\n",
"print(f\"Clinical data not available for {trait} in this dataset\")\n",
"\n",
"# 3. Prepare linked data - in this case, it will just be the gene expression data\n",
"# with missing clinical information\n",
"linked_data = normalized_gene_data.T\n",
"print(f\"Shape of linked data: {linked_data.shape}\")\n",
"\n",
"# 4. We cannot properly handle missing values for trait because the trait data \n",
"# doesn't exist in this dataset\n",
"\n",
"# 5. Since the trait data is completely missing, we shouldn't proceed with bias analysis\n",
"is_trait_biased = True # Mark as biased because we have no trait data for lupus\n",
"unbiased_linked_data = linked_data # Keep the gene data for reference\n",
"\n",
"# 6. Conduct quality check and save the cohort information - report that trait data is not available\n",
"is_trait_available = False # No trait data for lupus\n",
"is_usable = validate_and_save_cohort_info(\n",
" is_final=True,\n",
" cohort=cohort,\n",
" info_path=json_path,\n",
" is_gene_available=True,\n",
" is_trait_available=is_trait_available,\n",
" is_biased=is_trait_biased,\n",
" df=unbiased_linked_data,\n",
" note=\"Dataset contains gene expression data from endometrial tissue study of recurrent pregnancy losses \" +\n",
" \"and unexplained infertility, not lupus. No lupus trait data available.\"\n",
")\n",
"\n",
"# 7. Since the linked data is not usable for lupus analysis, we won't save it as a final dataset\n",
"if is_usable:\n",
" os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
" unbiased_linked_data.to_csv(out_data_file)\n",
" print(f\"Saved processed linked data to {out_data_file}\")\n",
"else:\n",
" print(\"Dataset validation failed: No lupus trait data available. Final linked data not saved.\")"
]
}
],
"metadata": {
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.16"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|