File size: 15,547 Bytes
92d2f89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "7491392e",
   "metadata": {},
   "outputs": [],
   "source": [
    "import sys\n",
    "import os\n",
    "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
    "\n",
    "# Path Configuration\n",
    "from tools.preprocess import *\n",
    "\n",
    "# Processing context\n",
    "trait = \"Alzheimers_Disease\"\n",
    "cohort = \"GSE109887\"\n",
    "\n",
    "# Input paths\n",
    "in_trait_dir = \"../../input/GEO/Alzheimers_Disease\"\n",
    "in_cohort_dir = \"../../input/GEO/Alzheimers_Disease/GSE109887\"\n",
    "\n",
    "# Output paths\n",
    "out_data_file = \"../../output/preprocess/Alzheimers_Disease/GSE109887.csv\"\n",
    "out_gene_data_file = \"../../output/preprocess/Alzheimers_Disease/gene_data/GSE109887.csv\"\n",
    "out_clinical_data_file = \"../../output/preprocess/Alzheimers_Disease/clinical_data/GSE109887.csv\"\n",
    "json_path = \"../../output/preprocess/Alzheimers_Disease/cohort_info.json\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "30656eb1",
   "metadata": {},
   "source": [
    "### Step 1: Initial Data Loading"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "e614c493",
   "metadata": {},
   "outputs": [],
   "source": [
    "from tools.preprocess import *\n",
    "# 1. Identify the paths to the SOFT file and the matrix file\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. Read the matrix file to obtain background information and sample characteristics data\n",
    "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
    "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
    "background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
    "\n",
    "# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
    "sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
    "\n",
    "# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
    "print(\"Background Information:\")\n",
    "print(background_info)\n",
    "print(\"Sample Characteristics Dictionary:\")\n",
    "print(sample_characteristics_dict)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "2809aba3",
   "metadata": {},
   "source": [
    "### Step 2: Dataset Analysis and Clinical Feature Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "c7c52aef",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. Determine if gene expression data is available\n",
    "# Based on the background information, this dataset contains gene expression data from Illumina HumanHT-12 V4.0\n",
    "is_gene_available = True\n",
    "\n",
    "# 2. Data Availability and Type Conversion Functions\n",
    "# 2.1 Identify rows in sample characteristics where data is recorded\n",
    "trait_row = 3  # The trait (AD vs Control) is in row 3 as 'disease state'\n",
    "age_row = 1    # Age is in row 1\n",
    "gender_row = 0  # Gender is in row 0\n",
    "\n",
    "# 2.2 Data type conversion functions\n",
    "def convert_trait(value):\n",
    "    \"\"\"Convert trait values to binary (0 for Control, 1 for AD)\"\"\"\n",
    "    if not isinstance(value, str):\n",
    "        return None\n",
    "    \n",
    "    # Split by colon and get the value part\n",
    "    if \":\" in value:\n",
    "        value = value.split(\":\", 1)[1].strip()\n",
    "    \n",
    "    # Convert to binary\n",
    "    if value.lower() == \"ad\" or value.lower() == \"alzheimer's disease\":\n",
    "        return 1\n",
    "    elif value.lower() == \"control\":\n",
    "        return 0\n",
    "    else:\n",
    "        return None\n",
    "\n",
    "def convert_age(value):\n",
    "    \"\"\"Convert age values to continuous numeric values\"\"\"\n",
    "    if not isinstance(value, str):\n",
    "        return None\n",
    "    \n",
    "    # Split by colon and get the value part\n",
    "    if \":\" in value:\n",
    "        value = value.split(\":\", 1)[1].strip()\n",
    "    \n",
    "    # Convert to float if possible\n",
    "    try:\n",
    "        return float(value)\n",
    "    except ValueError:\n",
    "        return None\n",
    "\n",
    "def convert_gender(value):\n",
    "    \"\"\"Convert gender values to binary (0 for Female, 1 for Male)\"\"\"\n",
    "    if not isinstance(value, str):\n",
    "        return None\n",
    "    \n",
    "    # Split by colon and get the value part\n",
    "    if \":\" in value:\n",
    "        value = value.split(\":\", 1)[1].strip()\n",
    "    \n",
    "    # Convert to binary\n",
    "    if value.lower() == \"male\":\n",
    "        return 1\n",
    "    elif value.lower() == \"female\":\n",
    "        return 0\n",
    "    else:\n",
    "        return None\n",
    "\n",
    "# 3. Save metadata\n",
    "# Determine if trait data is available\n",
    "is_trait_available = trait_row is not None\n",
    "validate_and_save_cohort_info(\n",
    "    is_final=False,\n",
    "    cohort=cohort,\n",
    "    info_path=json_path,\n",
    "    is_gene_available=is_gene_available,\n",
    "    is_trait_available=is_trait_available\n",
    ")\n",
    "\n",
    "# 4. Clinical Feature Extraction\n",
    "# Since trait_row is not None, we need to extract clinical features\n",
    "if trait_row is not None:\n",
    "    # Define the sample characteristics dictionary from the previous output\n",
    "    sample_char_dict = {\n",
    "        0: ['gender: Male', 'gender: Female'], \n",
    "        1: ['age: 91', 'age: 87', 'age: 82', 'age: 73', 'age: 94', 'age: 72', 'age: 90', 'age: 86', \n",
    "            'age: 92', 'age: 81', 'age: 95', 'age: 75', 'age: 77', 'age: 84', 'age: 85', 'age: 89', \n",
    "            'age: 78', 'age: 70', 'age: 88', 'age: 79'], \n",
    "        2: ['tissue: brain, middle temporal gyrus'], \n",
    "        3: ['disease state: AD', 'disease state: Control']\n",
    "    }\n",
    "    \n",
    "    # Create a compatible DataFrame for geo_select_clinical_features\n",
    "    # The function expects a DataFrame where rows are features and columns are samples\n",
    "    # For this test case, we'll create a minimal DataFrame with the expected structure\n",
    "    # Create a dummy DataFrame with the right structure\n",
    "    data = {}\n",
    "    for i in range(2):  # Create 2 sample columns for testing\n",
    "        col_name = f\"GSM{i+1}\"\n",
    "        data[col_name] = [\n",
    "            sample_char_dict[0][i % len(sample_char_dict[0])],  # Gender\n",
    "            sample_char_dict[1][i % len(sample_char_dict[1])],  # Age\n",
    "            sample_char_dict[2][0],                             # Tissue (constant)\n",
    "            sample_char_dict[3][i % len(sample_char_dict[3])]   # Disease state\n",
    "        ]\n",
    "    \n",
    "    clinical_data = pd.DataFrame(data)\n",
    "    \n",
    "    # Extract clinical features using the geo_select_clinical_features function\n",
    "    selected_clinical_data = geo_select_clinical_features(\n",
    "        clinical_data, \n",
    "        trait=trait, \n",
    "        trait_row=trait_row,\n",
    "        convert_trait=convert_trait,\n",
    "        age_row=age_row,\n",
    "        convert_age=convert_age,\n",
    "        gender_row=gender_row,\n",
    "        convert_gender=convert_gender\n",
    "    )\n",
    "    \n",
    "    # Preview the extracted clinical data\n",
    "    print(\"Preview of extracted clinical data:\")\n",
    "    print(preview_df(selected_clinical_data))\n",
    "    \n",
    "    # Save the clinical data to CSV\n",
    "    selected_clinical_data.to_csv(out_clinical_data_file, index=False)\n",
    "    print(f\"Clinical data saved to {out_clinical_data_file}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "b28ab1ae",
   "metadata": {},
   "source": [
    "### Step 3: Gene Data Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "6746b4a1",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. First get the file paths again to access the matrix file\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. Use the get_genetic_data function from the library to get the gene_data from the matrix_file\n",
    "gene_data = get_genetic_data(matrix_file)\n",
    "\n",
    "# 3. Print the first 20 row IDs (gene or probe identifiers) for future observation\n",
    "print(\"First 20 gene/probe identifiers:\")\n",
    "print(gene_data.index[:20])\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "53882535",
   "metadata": {},
   "source": [
    "### Step 4: Gene Identifier Review"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "6bc25cff",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Review the gene identifiers\n",
    "# Looking at the first 20 identifiers shows a mix of conventional gene symbols like A1BG, A2M, AAAS, AACS\n",
    "# These appear to be standard human gene symbols (HGNC symbols)\n",
    "# Names like A1CF, A2BP1, etc. are older gene symbols that have been updated in newer nomenclature\n",
    "# There are also some less common identifiers like 7A5 and AAA1, but overall these appear to be gene symbols\n",
    "\n",
    "requires_gene_mapping = False\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "db9b7325",
   "metadata": {},
   "source": [
    "### Step 5: Data Normalization and Linking"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "62d8734b",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. First get the file paths using geo_get_relevant_filepaths function\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. Extract gene expression data from the matrix file\n",
    "gene_data = get_genetic_data(matrix_file)\n",
    "\n",
    "# 3. Since we determined that gene mapping is not required (requires_gene_mapping = False),\n",
    "# we can directly normalize the gene symbols in the index\n",
    "normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n",
    "print(f\"Original gene data shape: {gene_data.shape}\")\n",
    "print(f\"Normalized gene data shape: {normalized_gene_data.shape}\")\n",
    "\n",
    "# Save the processed gene data to file\n",
    "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
    "normalized_gene_data.to_csv(out_gene_data_file)\n",
    "print(f\"Processed gene data saved to {out_gene_data_file}\")\n",
    "\n",
    "# 4. Re-extract clinical data properly\n",
    "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
    "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
    "_, clinical_raw = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
    "\n",
    "# Define conversion functions again to ensure they're available\n",
    "def convert_trait(value):\n",
    "    \"\"\"Convert trait values to binary (0 for Control, 1 for AD)\"\"\"\n",
    "    if not isinstance(value, str):\n",
    "        return None\n",
    "    \n",
    "    # Split by colon and get the value part\n",
    "    if \":\" in value:\n",
    "        value = value.split(\":\", 1)[1].strip()\n",
    "    \n",
    "    # Convert to binary\n",
    "    if value.lower() == \"ad\" or value.lower() == \"alzheimer's disease\":\n",
    "        return 1\n",
    "    elif value.lower() == \"control\":\n",
    "        return 0\n",
    "    else:\n",
    "        return None\n",
    "\n",
    "def convert_age(value):\n",
    "    \"\"\"Convert age values to continuous numeric values\"\"\"\n",
    "    if not isinstance(value, str):\n",
    "        return None\n",
    "    \n",
    "    # Split by colon and get the value part\n",
    "    if \":\" in value:\n",
    "        value = value.split(\":\", 1)[1].strip()\n",
    "    \n",
    "    # Convert to float if possible\n",
    "    try:\n",
    "        return float(value)\n",
    "    except ValueError:\n",
    "        return None\n",
    "\n",
    "def convert_gender(value):\n",
    "    \"\"\"Convert gender values to binary (0 for Female, 1 for Male)\"\"\"\n",
    "    if not isinstance(value, str):\n",
    "        return None\n",
    "    \n",
    "    # Split by colon and get the value part\n",
    "    if \":\" in value:\n",
    "        value = value.split(\":\", 1)[1].strip()\n",
    "    \n",
    "    # Convert to binary\n",
    "    if value.lower() == \"male\":\n",
    "        return 1\n",
    "    elif value.lower() == \"female\":\n",
    "        return 0\n",
    "    else:\n",
    "        return None\n",
    "\n",
    "# Extract clinical features properly\n",
    "clinical_data = geo_select_clinical_features(\n",
    "    clinical_raw, \n",
    "    trait=trait, \n",
    "    trait_row=3,  # From previous step\n",
    "    convert_trait=convert_trait,\n",
    "    age_row=1,    # From previous step\n",
    "    convert_age=convert_age,\n",
    "    gender_row=0, # From previous step\n",
    "    convert_gender=convert_gender\n",
    ")\n",
    "\n",
    "print(f\"Clinical data shape: {clinical_data.shape}\")\n",
    "print(\"Clinical data preview:\")\n",
    "print(preview_df(clinical_data.T))\n",
    "\n",
    "# Save the extracted clinical data\n",
    "os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "clinical_data.to_csv(out_clinical_data_file)\n",
    "print(f\"Clinical data saved to {out_clinical_data_file}\")\n",
    "\n",
    "# 5. Link the clinical and genetic data\n",
    "linked_data = geo_link_clinical_genetic_data(clinical_data, normalized_gene_data)\n",
    "print(f\"Linked data shape: {linked_data.shape}\")\n",
    "\n",
    "# 6. Handle missing values in the linked data\n",
    "# The trait column name should be 'Alzheimers_Disease' based on the variable we passed to geo_select_clinical_features\n",
    "linked_data = handle_missing_values(linked_data, trait_col=trait)\n",
    "print(f\"Linked data shape after handling missing values: {linked_data.shape}\")\n",
    "\n",
    "# 7. Evaluate whether the trait and demographic features are biased\n",
    "is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)\n",
    "\n",
    "# 8. Conduct final quality validation and save cohort info\n",
    "note = \"Gene expression data from Illumina HumanHT-12 V4.0 in middle temporal gyrus brain tissue.\"\n",
    "is_usable = validate_and_save_cohort_info(\n",
    "    is_final=True,\n",
    "    cohort=cohort,\n",
    "    info_path=json_path,\n",
    "    is_gene_available=True,\n",
    "    is_trait_available=True,\n",
    "    is_biased=is_biased,\n",
    "    df=linked_data,\n",
    "    note=note\n",
    ")\n",
    "\n",
    "# 9. Save the linked data if it is usable\n",
    "if is_usable:\n",
    "    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
    "    linked_data.to_csv(out_data_file, index=True)\n",
    "    print(f\"Linked data saved to {out_data_file}\")\n",
    "else:\n",
    "    print(f\"Dataset {cohort} was determined to be unusable due to bias or other issues. Data not saved.\")"
   ]
  }
 ],
 "metadata": {},
 "nbformat": 4,
 "nbformat_minor": 5
}