File size: 15,547 Bytes
92d2f89 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 |
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"id": "7491392e",
"metadata": {},
"outputs": [],
"source": [
"import sys\n",
"import os\n",
"sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
"\n",
"# Path Configuration\n",
"from tools.preprocess import *\n",
"\n",
"# Processing context\n",
"trait = \"Alzheimers_Disease\"\n",
"cohort = \"GSE109887\"\n",
"\n",
"# Input paths\n",
"in_trait_dir = \"../../input/GEO/Alzheimers_Disease\"\n",
"in_cohort_dir = \"../../input/GEO/Alzheimers_Disease/GSE109887\"\n",
"\n",
"# Output paths\n",
"out_data_file = \"../../output/preprocess/Alzheimers_Disease/GSE109887.csv\"\n",
"out_gene_data_file = \"../../output/preprocess/Alzheimers_Disease/gene_data/GSE109887.csv\"\n",
"out_clinical_data_file = \"../../output/preprocess/Alzheimers_Disease/clinical_data/GSE109887.csv\"\n",
"json_path = \"../../output/preprocess/Alzheimers_Disease/cohort_info.json\"\n"
]
},
{
"cell_type": "markdown",
"id": "30656eb1",
"metadata": {},
"source": [
"### Step 1: Initial Data Loading"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e614c493",
"metadata": {},
"outputs": [],
"source": [
"from tools.preprocess import *\n",
"# 1. Identify the paths to the SOFT file and the matrix file\n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"\n",
"# 2. Read the matrix file to obtain background information and sample characteristics data\n",
"background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
"clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
"background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
"\n",
"# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
"sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
"\n",
"# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
"print(\"Background Information:\")\n",
"print(background_info)\n",
"print(\"Sample Characteristics Dictionary:\")\n",
"print(sample_characteristics_dict)\n"
]
},
{
"cell_type": "markdown",
"id": "2809aba3",
"metadata": {},
"source": [
"### Step 2: Dataset Analysis and Clinical Feature Extraction"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c7c52aef",
"metadata": {},
"outputs": [],
"source": [
"# 1. Determine if gene expression data is available\n",
"# Based on the background information, this dataset contains gene expression data from Illumina HumanHT-12 V4.0\n",
"is_gene_available = True\n",
"\n",
"# 2. Data Availability and Type Conversion Functions\n",
"# 2.1 Identify rows in sample characteristics where data is recorded\n",
"trait_row = 3 # The trait (AD vs Control) is in row 3 as 'disease state'\n",
"age_row = 1 # Age is in row 1\n",
"gender_row = 0 # Gender is in row 0\n",
"\n",
"# 2.2 Data type conversion functions\n",
"def convert_trait(value):\n",
" \"\"\"Convert trait values to binary (0 for Control, 1 for AD)\"\"\"\n",
" if not isinstance(value, str):\n",
" return None\n",
" \n",
" # Split by colon and get the value part\n",
" if \":\" in value:\n",
" value = value.split(\":\", 1)[1].strip()\n",
" \n",
" # Convert to binary\n",
" if value.lower() == \"ad\" or value.lower() == \"alzheimer's disease\":\n",
" return 1\n",
" elif value.lower() == \"control\":\n",
" return 0\n",
" else:\n",
" return None\n",
"\n",
"def convert_age(value):\n",
" \"\"\"Convert age values to continuous numeric values\"\"\"\n",
" if not isinstance(value, str):\n",
" return None\n",
" \n",
" # Split by colon and get the value part\n",
" if \":\" in value:\n",
" value = value.split(\":\", 1)[1].strip()\n",
" \n",
" # Convert to float if possible\n",
" try:\n",
" return float(value)\n",
" except ValueError:\n",
" return None\n",
"\n",
"def convert_gender(value):\n",
" \"\"\"Convert gender values to binary (0 for Female, 1 for Male)\"\"\"\n",
" if not isinstance(value, str):\n",
" return None\n",
" \n",
" # Split by colon and get the value part\n",
" if \":\" in value:\n",
" value = value.split(\":\", 1)[1].strip()\n",
" \n",
" # Convert to binary\n",
" if value.lower() == \"male\":\n",
" return 1\n",
" elif value.lower() == \"female\":\n",
" return 0\n",
" else:\n",
" return None\n",
"\n",
"# 3. Save metadata\n",
"# Determine if trait data is available\n",
"is_trait_available = trait_row is not None\n",
"validate_and_save_cohort_info(\n",
" is_final=False,\n",
" cohort=cohort,\n",
" info_path=json_path,\n",
" is_gene_available=is_gene_available,\n",
" is_trait_available=is_trait_available\n",
")\n",
"\n",
"# 4. Clinical Feature Extraction\n",
"# Since trait_row is not None, we need to extract clinical features\n",
"if trait_row is not None:\n",
" # Define the sample characteristics dictionary from the previous output\n",
" sample_char_dict = {\n",
" 0: ['gender: Male', 'gender: Female'], \n",
" 1: ['age: 91', 'age: 87', 'age: 82', 'age: 73', 'age: 94', 'age: 72', 'age: 90', 'age: 86', \n",
" 'age: 92', 'age: 81', 'age: 95', 'age: 75', 'age: 77', 'age: 84', 'age: 85', 'age: 89', \n",
" 'age: 78', 'age: 70', 'age: 88', 'age: 79'], \n",
" 2: ['tissue: brain, middle temporal gyrus'], \n",
" 3: ['disease state: AD', 'disease state: Control']\n",
" }\n",
" \n",
" # Create a compatible DataFrame for geo_select_clinical_features\n",
" # The function expects a DataFrame where rows are features and columns are samples\n",
" # For this test case, we'll create a minimal DataFrame with the expected structure\n",
" # Create a dummy DataFrame with the right structure\n",
" data = {}\n",
" for i in range(2): # Create 2 sample columns for testing\n",
" col_name = f\"GSM{i+1}\"\n",
" data[col_name] = [\n",
" sample_char_dict[0][i % len(sample_char_dict[0])], # Gender\n",
" sample_char_dict[1][i % len(sample_char_dict[1])], # Age\n",
" sample_char_dict[2][0], # Tissue (constant)\n",
" sample_char_dict[3][i % len(sample_char_dict[3])] # Disease state\n",
" ]\n",
" \n",
" clinical_data = pd.DataFrame(data)\n",
" \n",
" # Extract clinical features using the geo_select_clinical_features function\n",
" selected_clinical_data = geo_select_clinical_features(\n",
" clinical_data, \n",
" trait=trait, \n",
" trait_row=trait_row,\n",
" convert_trait=convert_trait,\n",
" age_row=age_row,\n",
" convert_age=convert_age,\n",
" gender_row=gender_row,\n",
" convert_gender=convert_gender\n",
" )\n",
" \n",
" # Preview the extracted clinical data\n",
" print(\"Preview of extracted clinical data:\")\n",
" print(preview_df(selected_clinical_data))\n",
" \n",
" # Save the clinical data to CSV\n",
" selected_clinical_data.to_csv(out_clinical_data_file, index=False)\n",
" print(f\"Clinical data saved to {out_clinical_data_file}\")\n"
]
},
{
"cell_type": "markdown",
"id": "b28ab1ae",
"metadata": {},
"source": [
"### Step 3: Gene Data Extraction"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "6746b4a1",
"metadata": {},
"outputs": [],
"source": [
"# 1. First get the file paths again to access the matrix file\n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"\n",
"# 2. Use the get_genetic_data function from the library to get the gene_data from the matrix_file\n",
"gene_data = get_genetic_data(matrix_file)\n",
"\n",
"# 3. Print the first 20 row IDs (gene or probe identifiers) for future observation\n",
"print(\"First 20 gene/probe identifiers:\")\n",
"print(gene_data.index[:20])\n"
]
},
{
"cell_type": "markdown",
"id": "53882535",
"metadata": {},
"source": [
"### Step 4: Gene Identifier Review"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "6bc25cff",
"metadata": {},
"outputs": [],
"source": [
"# Review the gene identifiers\n",
"# Looking at the first 20 identifiers shows a mix of conventional gene symbols like A1BG, A2M, AAAS, AACS\n",
"# These appear to be standard human gene symbols (HGNC symbols)\n",
"# Names like A1CF, A2BP1, etc. are older gene symbols that have been updated in newer nomenclature\n",
"# There are also some less common identifiers like 7A5 and AAA1, but overall these appear to be gene symbols\n",
"\n",
"requires_gene_mapping = False\n"
]
},
{
"cell_type": "markdown",
"id": "db9b7325",
"metadata": {},
"source": [
"### Step 5: Data Normalization and Linking"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "62d8734b",
"metadata": {},
"outputs": [],
"source": [
"# 1. First get the file paths using geo_get_relevant_filepaths function\n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"\n",
"# 2. Extract gene expression data from the matrix file\n",
"gene_data = get_genetic_data(matrix_file)\n",
"\n",
"# 3. Since we determined that gene mapping is not required (requires_gene_mapping = False),\n",
"# we can directly normalize the gene symbols in the index\n",
"normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n",
"print(f\"Original gene data shape: {gene_data.shape}\")\n",
"print(f\"Normalized gene data shape: {normalized_gene_data.shape}\")\n",
"\n",
"# Save the processed gene data to file\n",
"os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
"normalized_gene_data.to_csv(out_gene_data_file)\n",
"print(f\"Processed gene data saved to {out_gene_data_file}\")\n",
"\n",
"# 4. Re-extract clinical data properly\n",
"background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
"clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
"_, clinical_raw = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
"\n",
"# Define conversion functions again to ensure they're available\n",
"def convert_trait(value):\n",
" \"\"\"Convert trait values to binary (0 for Control, 1 for AD)\"\"\"\n",
" if not isinstance(value, str):\n",
" return None\n",
" \n",
" # Split by colon and get the value part\n",
" if \":\" in value:\n",
" value = value.split(\":\", 1)[1].strip()\n",
" \n",
" # Convert to binary\n",
" if value.lower() == \"ad\" or value.lower() == \"alzheimer's disease\":\n",
" return 1\n",
" elif value.lower() == \"control\":\n",
" return 0\n",
" else:\n",
" return None\n",
"\n",
"def convert_age(value):\n",
" \"\"\"Convert age values to continuous numeric values\"\"\"\n",
" if not isinstance(value, str):\n",
" return None\n",
" \n",
" # Split by colon and get the value part\n",
" if \":\" in value:\n",
" value = value.split(\":\", 1)[1].strip()\n",
" \n",
" # Convert to float if possible\n",
" try:\n",
" return float(value)\n",
" except ValueError:\n",
" return None\n",
"\n",
"def convert_gender(value):\n",
" \"\"\"Convert gender values to binary (0 for Female, 1 for Male)\"\"\"\n",
" if not isinstance(value, str):\n",
" return None\n",
" \n",
" # Split by colon and get the value part\n",
" if \":\" in value:\n",
" value = value.split(\":\", 1)[1].strip()\n",
" \n",
" # Convert to binary\n",
" if value.lower() == \"male\":\n",
" return 1\n",
" elif value.lower() == \"female\":\n",
" return 0\n",
" else:\n",
" return None\n",
"\n",
"# Extract clinical features properly\n",
"clinical_data = geo_select_clinical_features(\n",
" clinical_raw, \n",
" trait=trait, \n",
" trait_row=3, # From previous step\n",
" convert_trait=convert_trait,\n",
" age_row=1, # From previous step\n",
" convert_age=convert_age,\n",
" gender_row=0, # From previous step\n",
" convert_gender=convert_gender\n",
")\n",
"\n",
"print(f\"Clinical data shape: {clinical_data.shape}\")\n",
"print(\"Clinical data preview:\")\n",
"print(preview_df(clinical_data.T))\n",
"\n",
"# Save the extracted clinical data\n",
"os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
"clinical_data.to_csv(out_clinical_data_file)\n",
"print(f\"Clinical data saved to {out_clinical_data_file}\")\n",
"\n",
"# 5. Link the clinical and genetic data\n",
"linked_data = geo_link_clinical_genetic_data(clinical_data, normalized_gene_data)\n",
"print(f\"Linked data shape: {linked_data.shape}\")\n",
"\n",
"# 6. Handle missing values in the linked data\n",
"# The trait column name should be 'Alzheimers_Disease' based on the variable we passed to geo_select_clinical_features\n",
"linked_data = handle_missing_values(linked_data, trait_col=trait)\n",
"print(f\"Linked data shape after handling missing values: {linked_data.shape}\")\n",
"\n",
"# 7. Evaluate whether the trait and demographic features are biased\n",
"is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)\n",
"\n",
"# 8. Conduct final quality validation and save cohort info\n",
"note = \"Gene expression data from Illumina HumanHT-12 V4.0 in middle temporal gyrus brain tissue.\"\n",
"is_usable = validate_and_save_cohort_info(\n",
" is_final=True,\n",
" cohort=cohort,\n",
" info_path=json_path,\n",
" is_gene_available=True,\n",
" is_trait_available=True,\n",
" is_biased=is_biased,\n",
" df=linked_data,\n",
" note=note\n",
")\n",
"\n",
"# 9. Save the linked data if it is usable\n",
"if is_usable:\n",
" os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
" linked_data.to_csv(out_data_file, index=True)\n",
" print(f\"Linked data saved to {out_data_file}\")\n",
"else:\n",
" print(f\"Dataset {cohort} was determined to be unusable due to bias or other issues. Data not saved.\")"
]
}
],
"metadata": {},
"nbformat": 4,
"nbformat_minor": 5
}
|