File size: 33,962 Bytes
92d2f89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "f362c874",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:25:37.751686Z",
     "iopub.status.busy": "2025-03-25T06:25:37.751507Z",
     "iopub.status.idle": "2025-03-25T06:25:37.917224Z",
     "shell.execute_reply": "2025-03-25T06:25:37.916829Z"
    }
   },
   "outputs": [],
   "source": [
    "import sys\n",
    "import os\n",
    "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
    "\n",
    "# Path Configuration\n",
    "from tools.preprocess import *\n",
    "\n",
    "# Processing context\n",
    "trait = \"Alzheimers_Disease\"\n",
    "cohort = \"GSE117589\"\n",
    "\n",
    "# Input paths\n",
    "in_trait_dir = \"../../input/GEO/Alzheimers_Disease\"\n",
    "in_cohort_dir = \"../../input/GEO/Alzheimers_Disease/GSE117589\"\n",
    "\n",
    "# Output paths\n",
    "out_data_file = \"../../output/preprocess/Alzheimers_Disease/GSE117589.csv\"\n",
    "out_gene_data_file = \"../../output/preprocess/Alzheimers_Disease/gene_data/GSE117589.csv\"\n",
    "out_clinical_data_file = \"../../output/preprocess/Alzheimers_Disease/clinical_data/GSE117589.csv\"\n",
    "json_path = \"../../output/preprocess/Alzheimers_Disease/cohort_info.json\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "c35049cb",
   "metadata": {},
   "source": [
    "### Step 1: Initial Data Loading"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "f4aad409",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:25:37.918737Z",
     "iopub.status.busy": "2025-03-25T06:25:37.918589Z",
     "iopub.status.idle": "2025-03-25T06:25:38.009147Z",
     "shell.execute_reply": "2025-03-25T06:25:38.008804Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Background Information:\n",
      "!Series_title\t\"REST and Neural Gene Network Dysregulation in iPS Cell Models of Alzheimer’s Disease\"\n",
      "!Series_summary\t\"This SuperSeries is composed of the SubSeries listed below.\"\n",
      "!Series_overall_design\t\"Refer to individual Series\"\n",
      "Sample Characteristics Dictionary:\n",
      "{0: ['cell type: induced pluripotent stem cells', 'cell type: neurons', 'cell type: neural progenitor cells'], 1: ['subject: 60F', 'subject: 64M', 'subject: 72M', 'subject: 73M', 'subject: 75F', 'subject: 92F', 'subject: 60M', 'subject: 69F', 'subject: 87F'], 2: ['diagnosis: normal', \"diagnosis: sporadic Alzheimer's disease\"], 3: ['clone: Clone 1', 'clone: Clone 2'], 4: ['coriell #: AG04455', 'coriell #: AG08125', 'coriell #: AG08379', 'coriell #: AG08509', 'coriell #: AG14244', 'coriell #: AG09173', 'coriell #: AG07376', 'coriell #: AG21158', 'coriell #: AG08243', 'coriell #: AG10788', 'coriell #: AG06869']}\n"
     ]
    }
   ],
   "source": [
    "from tools.preprocess import *\n",
    "# 1. Identify the paths to the SOFT file and the matrix file\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. Read the matrix file to obtain background information and sample characteristics data\n",
    "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
    "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
    "background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
    "\n",
    "# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
    "sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
    "\n",
    "# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
    "print(\"Background Information:\")\n",
    "print(background_info)\n",
    "print(\"Sample Characteristics Dictionary:\")\n",
    "print(sample_characteristics_dict)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "1c037745",
   "metadata": {},
   "source": [
    "### Step 2: Dataset Analysis and Clinical Feature Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "1d67ad1b",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:25:38.010196Z",
     "iopub.status.busy": "2025-03-25T06:25:38.010078Z",
     "iopub.status.idle": "2025-03-25T06:25:38.031828Z",
     "shell.execute_reply": "2025-03-25T06:25:38.031496Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Preview of extracted clinical features:\n",
      "{'GSM3304268': [0.0, 60.0, 0.0], 'GSM3304269': [0.0, 64.0, 1.0], 'GSM3304270': [0.0, 72.0, 1.0], 'GSM3304271': [0.0, 73.0, 1.0], 'GSM3304272': [0.0, 75.0, 0.0], 'GSM3304273': [0.0, 92.0, 0.0], 'GSM3304274': [1.0, 60.0, 1.0], 'GSM3304275': [1.0, 69.0, 0.0], 'GSM3304276': [1.0, 72.0, 1.0], 'GSM3304277': [1.0, 87.0, 0.0], 'GSM3304278': [0.0, 60.0, 0.0], 'GSM3304279': [0.0, 64.0, 1.0], 'GSM3304280': [0.0, 72.0, 1.0], 'GSM3304281': [0.0, 73.0, 1.0], 'GSM3304282': [0.0, 75.0, 0.0], 'GSM3304283': [0.0, 92.0, 0.0], 'GSM3304284': [1.0, 60.0, 0.0], 'GSM3304285': [1.0, 60.0, 1.0], 'GSM3304286': [1.0, 69.0, 0.0], 'GSM3304287': [1.0, 72.0, 1.0], 'GSM3304288': [1.0, 87.0, 0.0], 'GSM3304289': [0.0, 60.0, 0.0], 'GSM3304290': [0.0, 64.0, 1.0], 'GSM3304291': [0.0, 72.0, 1.0], 'GSM3304292': [0.0, 73.0, 1.0], 'GSM3304293': [0.0, 92.0, 0.0], 'GSM3304294': [1.0, 60.0, 0.0], 'GSM3304295': [1.0, 60.0, 1.0], 'GSM3304296': [1.0, 69.0, 0.0], 'GSM3304297': [1.0, 72.0, 1.0], 'GSM3304298': [1.0, 87.0, 0.0]}\n",
      "Clinical features saved to ../../output/preprocess/Alzheimers_Disease/clinical_data/GSE117589.csv\n"
     ]
    }
   ],
   "source": [
    "# 1. Gene Expression Data Availability\n",
    "# Based on the background information and sample characteristics, this appears to be a dataset with gene expression data\n",
    "# from iPSCs, neurons, and neural progenitor cells. Therefore, gene expression data is likely available.\n",
    "is_gene_available = True\n",
    "\n",
    "# 2. Variable Availability and Data Type Conversion\n",
    "# 2.1 Data Availability\n",
    "\n",
    "# For Alzheimer's Disease trait:\n",
    "# Looking at key 2, we see \"diagnosis: normal\" and \"diagnosis: sporadic Alzheimer's disease\"\n",
    "trait_row = 2\n",
    "\n",
    "# For age:\n",
    "# Age is not explicitly given but might be inferred from key 1 where subject info contains age and gender\n",
    "# e.g., 'subject: 60F', 'subject: 64M'\n",
    "age_row = 1\n",
    "\n",
    "# For gender:\n",
    "# Gender is also in key 1 as part of subject information\n",
    "gender_row = 1\n",
    "\n",
    "# 2.2 Data Type Conversion\n",
    "\n",
    "def convert_trait(value):\n",
    "    if not isinstance(value, str):\n",
    "        return None\n",
    "    value = value.split(': ')[-1].strip().lower()\n",
    "    if \"alzheimer\" in value or \"ad\" in value:\n",
    "        return 1\n",
    "    elif \"normal\" in value or \"control\" in value or \"healthy\" in value:\n",
    "        return 0\n",
    "    return None\n",
    "\n",
    "def convert_age(value):\n",
    "    if not isinstance(value, str):\n",
    "        return None\n",
    "    # Extract age from patterns like 'subject: 60F', 'subject: 64M'\n",
    "    value = value.split(': ')[-1].strip()\n",
    "    # Extract digits from the beginning of the string\n",
    "    import re\n",
    "    age_match = re.match(r'^(\\d+)', value)\n",
    "    if age_match:\n",
    "        try:\n",
    "            return int(age_match.group(1))\n",
    "        except ValueError:\n",
    "            return None\n",
    "    return None\n",
    "\n",
    "def convert_gender(value):\n",
    "    if not isinstance(value, str):\n",
    "        return None\n",
    "    # Extract gender from patterns like 'subject: 60F', 'subject: 64M'\n",
    "    value = value.split(': ')[-1].strip()\n",
    "    # Check if the last character is 'F' or 'M'\n",
    "    if value.endswith('F'):\n",
    "        return 0  # Female\n",
    "    elif value.endswith('M'):\n",
    "        return 1  # Male\n",
    "    return None\n",
    "\n",
    "# 3. Save Metadata\n",
    "# Determine if trait data is available\n",
    "is_trait_available = trait_row is not None\n",
    "validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, \n",
    "                             is_gene_available=is_gene_available, is_trait_available=is_trait_available)\n",
    "\n",
    "# 4. Clinical Feature Extraction\n",
    "if trait_row is not None:\n",
    "    # Assume clinical_data is already loaded from a previous step\n",
    "    try:\n",
    "        # Extract clinical features using the clinical_data DataFrame from step 1\n",
    "        clinical_features = geo_select_clinical_features(\n",
    "            clinical_df=clinical_data,\n",
    "            trait=trait,\n",
    "            trait_row=trait_row,\n",
    "            convert_trait=convert_trait,\n",
    "            age_row=age_row,\n",
    "            convert_age=convert_age,\n",
    "            gender_row=gender_row,\n",
    "            convert_gender=convert_gender\n",
    "        )\n",
    "        \n",
    "        # Preview the extracted clinical features\n",
    "        print(\"Preview of extracted clinical features:\")\n",
    "        print(preview_df(clinical_features))\n",
    "        \n",
    "        # Save the extracted clinical features\n",
    "        os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "        clinical_features.to_csv(out_clinical_data_file, index=False)\n",
    "        print(f\"Clinical features saved to {out_clinical_data_file}\")\n",
    "    except NameError:\n",
    "        print(\"Clinical data not available from previous steps. Skipping clinical feature extraction.\")\n",
    "    except Exception as e:\n",
    "        print(f\"Error in clinical feature extraction: {e}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "eede0869",
   "metadata": {},
   "source": [
    "### Step 3: Gene Data Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "ace4ccca",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:25:38.032917Z",
     "iopub.status.busy": "2025-03-25T06:25:38.032804Z",
     "iopub.status.idle": "2025-03-25T06:25:38.116296Z",
     "shell.execute_reply": "2025-03-25T06:25:38.115929Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "First 20 gene/probe identifiers:\n",
      "Index(['ENSG00000000003_at', 'ENSG00000000005_at', 'ENSG00000000419_at',\n",
      "       'ENSG00000000457_at', 'ENSG00000000460_at', 'ENSG00000000938_at',\n",
      "       'ENSG00000000971_at', 'ENSG00000001036_at', 'ENSG00000001084_at',\n",
      "       'ENSG00000001167_at', 'ENSG00000001460_at', 'ENSG00000001461_at',\n",
      "       'ENSG00000001497_at', 'ENSG00000001561_at', 'ENSG00000001617_at',\n",
      "       'ENSG00000001626_at', 'ENSG00000001629_at', 'ENSG00000001631_at',\n",
      "       'ENSG00000002016_at', 'ENSG00000002079_at'],\n",
      "      dtype='object', name='ID')\n"
     ]
    }
   ],
   "source": [
    "# 1. First get the file paths again to access the matrix file\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. Use the get_genetic_data function from the library to get the gene_data from the matrix_file\n",
    "gene_data = get_genetic_data(matrix_file)\n",
    "\n",
    "# 3. Print the first 20 row IDs (gene or probe identifiers) for future observation\n",
    "print(\"First 20 gene/probe identifiers:\")\n",
    "print(gene_data.index[:20])\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "99156441",
   "metadata": {},
   "source": [
    "### Step 4: Gene Identifier Review"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "98f0cc09",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:25:38.117690Z",
     "iopub.status.busy": "2025-03-25T06:25:38.117568Z",
     "iopub.status.idle": "2025-03-25T06:25:38.119538Z",
     "shell.execute_reply": "2025-03-25T06:25:38.119217Z"
    }
   },
   "outputs": [],
   "source": [
    "# Analysis of gene identifiers\n",
    "# The identifiers start with 'ENSG' which indicates they are Ensembl gene IDs\n",
    "# These are not standard human gene symbols (like BRCA1, APP, etc.)\n",
    "# Ensembl IDs need to be mapped to standard gene symbols for better interpretability\n",
    "\n",
    "requires_gene_mapping = True\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "27223c64",
   "metadata": {},
   "source": [
    "### Step 5: Gene Annotation"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "767604d2",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:25:38.120814Z",
     "iopub.status.busy": "2025-03-25T06:25:38.120700Z",
     "iopub.status.idle": "2025-03-25T06:25:38.865986Z",
     "shell.execute_reply": "2025-03-25T06:25:38.865603Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Gene annotation preview:\n",
      "{'ID': ['ENSG00000000003_at', 'ENSG00000000005_at', 'ENSG00000000419_at', 'ENSG00000000457_at', 'ENSG00000000460_at'], 'SPOT_ID': ['ENSG00000000003', 'ENSG00000000005', 'ENSG00000000419', 'ENSG00000000457', 'ENSG00000000460'], 'Description': ['tetraspanin 6 [Source:HGNC Symbol;Acc:HGNC:11858]', 'tenomodulin [Source:HGNC Symbol;Acc:HGNC:17757]', 'dolichyl-phosphate mannosyltransferase subunit 1, catalytic [Source:HGNC Symbol;Acc:HGNC:3005]', 'SCY1 like pseudokinase 3 [Source:HGNC Symbol;Acc:HGNC:19285]', 'chromosome 1 open reading frame 112 [Source:HGNC Symbol;Acc:HGNC:25565]']}\n"
     ]
    }
   ],
   "source": [
    "# 1. First get the file paths using geo_get_relevant_filepaths function\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.\n",
    "gene_annotation = get_gene_annotation(soft_file)\n",
    "\n",
    "# 3. Use the 'preview_df' function from the library to preview the data and print out the results.\n",
    "print(\"Gene annotation preview:\")\n",
    "print(preview_df(gene_annotation))\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "60f1a9f6",
   "metadata": {},
   "source": [
    "### Step 6: Gene Identifier Mapping"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "fdc3d9f0",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:25:38.867417Z",
     "iopub.status.busy": "2025-03-25T06:25:38.867286Z",
     "iopub.status.idle": "2025-03-25T06:25:39.342695Z",
     "shell.execute_reply": "2025-03-25T06:25:39.342322Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Sample SPOT_ID and Description pairs:\n",
      "SPOT_ID: ENSG00000000003 - Description: tetraspanin 6 [Source:HGNC Symbol;Acc:HGNC:11858]\n",
      "SPOT_ID: ENSG00000000005 - Description: tenomodulin [Source:HGNC Symbol;Acc:HGNC:17757]\n",
      "SPOT_ID: ENSG00000000419 - Description: dolichyl-phosphate mannosyltransferase subunit 1, catalytic [Source:HGNC Symbol;Acc:HGNC:3005]\n",
      "SPOT_ID: ENSG00000000457 - Description: SCY1 like pseudokinase 3 [Source:HGNC Symbol;Acc:HGNC:19285]\n",
      "SPOT_ID: ENSG00000000460 - Description: chromosome 1 open reading frame 112 [Source:HGNC Symbol;Acc:HGNC:25565]\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Gene mapping preview:\n",
      "{'ID': ['ENSG00000000003_at', 'ENSG00000000005_at', 'ENSG00000000419_at', 'ENSG00000000457_at', 'ENSG00000000460_at'], 'Gene': [['HGNC'], ['HGNC'], ['HGNC'], ['SCY1', 'HGNC'], ['HGNC']]}\n",
      "Number of probes with gene symbols: 18144\n",
      "Gene data shape before normalization: (0, 31)\n",
      "Sample gene symbols before normalization:\n",
      "[]\n",
      "Gene data shape after normalization: (0, 31)\n",
      "\n",
      "Processed gene expression data preview (first 5 rows, 5 columns):\n",
      "Gene data is empty after processing\n",
      "Processed gene data saved to ../../output/preprocess/Alzheimers_Disease/gene_data/GSE117589.csv\n"
     ]
    }
   ],
   "source": [
    "# 1. Determine which columns contain gene identifiers and gene symbols\n",
    "# The 'ID' column in gene_annotation matches the index in gene_data\n",
    "# We need to extract the official gene symbols from the Description field\n",
    "\n",
    "# Let's look at the SPOT_ID and Description columns more closely\n",
    "print(\"Sample SPOT_ID and Description pairs:\")\n",
    "for i in range(min(5, len(gene_annotation))):\n",
    "    print(f\"SPOT_ID: {gene_annotation.iloc[i]['SPOT_ID']} - Description: {gene_annotation.iloc[i]['Description']}\")\n",
    "\n",
    "# Create a mapping from ENSEMBL IDs to gene symbols using regex to extract symbols from Description\n",
    "import re\n",
    "\n",
    "def extract_gene_symbol_from_description(description_text):\n",
    "    if not isinstance(description_text, str):\n",
    "        return []\n",
    "    \n",
    "    # Pattern to extract HGNC symbols from description\n",
    "    # Example: \"tetraspanin 6 [Source:HGNC Symbol;Acc:HGNC:11858]\" -> extract the HGNC ID 11858\n",
    "    hgnc_match = re.search(r'HGNC:(\\d+)', description_text)\n",
    "    if hgnc_match:\n",
    "        # Use extract_human_gene_symbols to get any gene symbols in the text\n",
    "        symbols = extract_human_gene_symbols(description_text)\n",
    "        if symbols:\n",
    "            return symbols\n",
    "        \n",
    "        # If no symbols found with extract_human_gene_symbols, try to get the first word\n",
    "        # that might be a gene symbol\n",
    "        first_part_match = re.match(r'^(\\w+)', description_text)\n",
    "        if first_part_match:\n",
    "            return [first_part_match.group(1)]\n",
    "    \n",
    "    return []\n",
    "\n",
    "# Create a custom mapping dataframe that contains both ENSEMBL IDs and symbol information\n",
    "mapping_df = pd.DataFrame({\n",
    "    'ID': gene_annotation['ID'],\n",
    "    'Gene': gene_annotation['Description'].apply(extract_human_gene_symbols)\n",
    "})\n",
    "\n",
    "# Filter out rows where Gene is an empty list\n",
    "mapping_df = mapping_df[mapping_df['Gene'].apply(len) > 0]\n",
    "\n",
    "# Print the first few rows of the mapping to verify\n",
    "print(\"Gene mapping preview:\")\n",
    "print(preview_df(mapping_df))\n",
    "print(f\"Number of probes with gene symbols: {len(mapping_df)}\")\n",
    "\n",
    "# 3. Apply the gene mapping to convert probe-level measurements to gene expression data\n",
    "gene_data = apply_gene_mapping(gene_data, mapping_df)\n",
    "\n",
    "# Print shape before normalization\n",
    "print(f\"Gene data shape before normalization: {gene_data.shape}\")\n",
    "\n",
    "# Check if gene symbols need normalization\n",
    "print(\"Sample gene symbols before normalization:\")\n",
    "print(list(gene_data.index[:10]))\n",
    "\n",
    "# Normalize gene symbols to ensure consistency\n",
    "gene_data = normalize_gene_symbols_in_index(gene_data)\n",
    "\n",
    "# Print shape after normalization\n",
    "print(f\"Gene data shape after normalization: {gene_data.shape}\")\n",
    "\n",
    "# Preview the first few rows of the processed gene expression data\n",
    "print(\"\\nProcessed gene expression data preview (first 5 rows, 5 columns):\")\n",
    "if not gene_data.empty:\n",
    "    print(gene_data.iloc[:5, :5])\n",
    "else:\n",
    "    print(\"Gene data is empty after processing\")\n",
    "\n",
    "# Save the processed gene data to file\n",
    "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
    "gene_data.to_csv(out_gene_data_file)\n",
    "print(f\"Processed gene data saved to {out_gene_data_file}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "a1524db6",
   "metadata": {},
   "source": [
    "### Step 7: Data Normalization and Linking"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "972390aa",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:25:39.344195Z",
     "iopub.status.busy": "2025-03-25T06:25:39.344071Z",
     "iopub.status.idle": "2025-03-25T06:25:40.736480Z",
     "shell.execute_reply": "2025-03-25T06:25:40.736105Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Gene mapping preview:\n",
      "{'ID': ['ENSG00000000003_at', 'ENSG00000000005_at', 'ENSG00000000419_at', 'ENSG00000000457_at', 'ENSG00000000460_at'], 'Gene': [['HGNC'], ['HGNC'], ['HGNC'], ['SCY1', 'HGNC'], ['HGNC']]}\n",
      "Number of probes with gene symbols: 18145\n",
      "\n",
      "Gene expression data preview:\n",
      "Gene expression data shape: (0, 31)\n",
      "Sample column names: ['GSM3304268', 'GSM3304269', 'GSM3304270', 'GSM3304271', 'GSM3304272']\n",
      "Re-loaded gene data shape: (20027, 31)\n",
      "Gene data shape after mapping: (0, 31)\n",
      "Mapped gene data is suspiciously small. Trying alternative approach...\n",
      "Alternative mapping created with 18146 entries\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Gene data shape after alternative mapping: (2551, 31)\n",
      "Processed gene data saved to ../../output/preprocess/Alzheimers_Disease/gene_data/GSE117589.csv\n"
     ]
    }
   ],
   "source": [
    "# 1. First get the file paths using geo_get_relevant_filepaths function\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.\n",
    "gene_annotation = get_gene_annotation(soft_file)\n",
    "\n",
    "# 3. Extract gene symbols from Description field properly\n",
    "def extract_gene_symbol_from_description(description_text):\n",
    "    if not isinstance(description_text, str):\n",
    "        return []\n",
    "    \n",
    "    # Get the gene name from the beginning of description (before [Source:...])\n",
    "    # Example: \"tetraspanin 6 [Source:HGNC Symbol;Acc:HGNC:11858]\" -> \"tetraspanin 6\"\n",
    "    name_part = description_text.split('[Source:')[0].strip()\n",
    "    \n",
    "    # Many descriptions have format \"Gene Name [Source:...]\" - extract the gene symbol\n",
    "    # Gene symbols are typically uppercase, so look for capital letters\n",
    "    symbols = extract_human_gene_symbols(description_text)\n",
    "    \n",
    "    # If we found symbols using the extract_human_gene_symbols function, return them\n",
    "    if symbols:\n",
    "        return symbols\n",
    "    \n",
    "    # Fallback: try to extract the first word if it looks like a gene symbol\n",
    "    words = name_part.split()\n",
    "    if words and len(words[0]) <= 10 and any(c.isupper() for c in words[0]):\n",
    "        return [words[0]]\n",
    "    \n",
    "    return []\n",
    "\n",
    "# Create a custom mapping dataframe\n",
    "mapping_df = pd.DataFrame({\n",
    "    'ID': gene_annotation['ID'],\n",
    "    'Gene': gene_annotation['Description'].apply(extract_gene_symbol_from_description)\n",
    "})\n",
    "\n",
    "# Filter out rows where Gene is an empty list\n",
    "mapping_df = mapping_df[mapping_df['Gene'].apply(len) > 0]\n",
    "\n",
    "# Print the first few rows of the mapping to verify\n",
    "print(\"Gene mapping preview:\")\n",
    "print(preview_df(mapping_df))\n",
    "print(f\"Number of probes with gene symbols: {len(mapping_df)}\")\n",
    "\n",
    "# Let's also check gene expression data to make sure it's not empty\n",
    "print(\"\\nGene expression data preview:\")\n",
    "print(f\"Gene expression data shape: {gene_data.shape}\")\n",
    "print(f\"Sample column names: {list(gene_data.columns[:5])}\")\n",
    "\n",
    "# Extract gene expression data again from the matrix file to ensure we have good data\n",
    "gene_data = get_genetic_data(matrix_file)\n",
    "print(f\"Re-loaded gene data shape: {gene_data.shape}\")\n",
    "\n",
    "# 3. Apply the gene mapping to convert probe-level measurements to gene expression data\n",
    "gene_data_mapped = apply_gene_mapping(gene_data, mapping_df)\n",
    "print(f\"Gene data shape after mapping: {gene_data_mapped.shape}\")\n",
    "\n",
    "# If the mapped data is too small or empty, try a different approach\n",
    "if gene_data_mapped.shape[0] < 100:\n",
    "    print(\"Mapped gene data is suspiciously small. Trying alternative approach...\")\n",
    "    # Direct approach: Extract gene name from the beginning of the Description\n",
    "    mapping_df = pd.DataFrame({\n",
    "        'ID': gene_annotation['ID'],\n",
    "        'Gene': gene_annotation['Description'].apply(lambda x: \n",
    "            x.split('[')[0].strip() if isinstance(x, str) else '')\n",
    "    })\n",
    "    # Keep only non-empty gene names\n",
    "    mapping_df = mapping_df[mapping_df['Gene'] != '']\n",
    "    print(f\"Alternative mapping created with {len(mapping_df)} entries\")\n",
    "    \n",
    "    # Apply alternative mapping\n",
    "    gene_data_mapped = apply_gene_mapping(gene_data, mapping_df)\n",
    "    print(f\"Gene data shape after alternative mapping: {gene_data_mapped.shape}\")\n",
    "\n",
    "# If still empty, use the original gene data with ENSEMBL IDs as gene names\n",
    "if gene_data_mapped.shape[0] < 100:\n",
    "    print(\"Using original gene data with ENSEMBL IDs as fallback\")\n",
    "    # Remove the _at suffix from the index\n",
    "    gene_data.index = gene_data.index.str.replace('_at', '')\n",
    "    gene_data_mapped = gene_data\n",
    "    print(f\"Using original gene data: {gene_data_mapped.shape}\")\n",
    "\n",
    "# Save the processed gene data to file\n",
    "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
    "gene_data_mapped.to_csv(out_gene_data_file)\n",
    "print(f\"Processed gene data saved to {out_gene_data_file}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "af163808",
   "metadata": {},
   "source": [
    "### Step 8: Data Normalization and Linking"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "id": "740e6730",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:25:40.737991Z",
     "iopub.status.busy": "2025-03-25T06:25:40.737869Z",
     "iopub.status.idle": "2025-03-25T06:25:40.757971Z",
     "shell.execute_reply": "2025-03-25T06:25:40.757644Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Clinical data columns: Index(['GSM3304268', 'GSM3304269', 'GSM3304270', 'GSM3304271', 'GSM3304272',\n",
      "       'GSM3304273', 'GSM3304274', 'GSM3304275', 'GSM3304276', 'GSM3304277',\n",
      "       'GSM3304278', 'GSM3304279', 'GSM3304280', 'GSM3304281', 'GSM3304282',\n",
      "       'GSM3304283', 'GSM3304284', 'GSM3304285', 'GSM3304286', 'GSM3304287',\n",
      "       'GSM3304288', 'GSM3304289', 'GSM3304290', 'GSM3304291', 'GSM3304292',\n",
      "       'GSM3304293', 'GSM3304294', 'GSM3304295', 'GSM3304296', 'GSM3304297',\n",
      "       'GSM3304298'],\n",
      "      dtype='object')\n",
      "Gene data shape: (2551, 31)\n",
      "Linked data shape: (2554, 31)\n",
      "Linked data index preview: ['Alzheimers_Disease', 'Age', 'Gender', 'A-', 'A-52', 'A0', 'A1', 'A10', 'A11', 'A12']\n",
      "Transposed linked data shape: (31, 2554)\n",
      "Actual columns in linked_data: ['Alzheimers_Disease', 'Age', 'Gender', 'A-', 'A-52', 'A0', 'A1', 'A10', 'A11', 'A12']\n",
      "Data shape after handling missing values: (0, 2)\n",
      "Quartiles for 'Alzheimers_Disease':\n",
      "  25%: nan\n",
      "  50% (Median): nan\n",
      "  75%: nan\n",
      "Min: nan\n",
      "Max: nan\n",
      "The distribution of the feature 'Alzheimers_Disease' in this dataset is fine.\n",
      "\n",
      "Quartiles for 'Age':\n",
      "  25%: nan\n",
      "  50% (Median): nan\n",
      "  75%: nan\n",
      "Min: nan\n",
      "Max: nan\n",
      "The distribution of the feature 'Age' in this dataset is fine.\n",
      "\n",
      "Trait bias assessment: False\n",
      "Data columns after bias assessment: ['Alzheimers_Disease', 'Age']\n",
      "Abnormality detected in the cohort: GSE117589. Preprocessing failed.\n",
      "A new JSON file was created at: ../../output/preprocess/Alzheimers_Disease/cohort_info.json\n",
      "Dataset not usable due to bias or other issues. Linked data not saved.\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/tmp/ipykernel_51556/2649569560.py:40: FutureWarning: The behavior of DataFrame concatenation with empty or all-NA entries is deprecated. In a future version, this will no longer exclude empty or all-NA columns when determining the result dtypes. To retain the old behavior, exclude the relevant entries before the concat operation.\n",
      "  linked_data = pd.concat([clinical_data, gene_data_mapped], axis=0)\n"
     ]
    }
   ],
   "source": [
    "# Let's continue from where we left off with the gene data processing\n",
    "# Load clinical data that was saved earlier\n",
    "clinical_data = pd.read_csv(out_clinical_data_file)\n",
    "print(\"Clinical data columns:\", clinical_data.columns)\n",
    "\n",
    "# Load gene expression data \n",
    "gene_data_mapped = pd.read_csv(out_gene_data_file, index_col=0)\n",
    "print(\"Gene data shape:\", gene_data_mapped.shape)\n",
    "\n",
    "# We need to transform clinical data into the right format for linking\n",
    "# First, check if the clinical data has any column that we can use as sample identifiers\n",
    "if 'Unnamed: 0' in clinical_data.columns:\n",
    "    clinical_data.rename(columns={'Unnamed: 0': 'Sample'}, inplace=True)\n",
    "    clinical_data.set_index('Sample', inplace=True)\n",
    "else:\n",
    "    # Create a DataFrame with the appropriate structure: samples as columns, features as rows\n",
    "    # First get sample IDs from gene data\n",
    "    sample_ids = gene_data_mapped.columns.tolist()\n",
    "    \n",
    "    # Create a new DataFrame with the right structure\n",
    "    new_clinical_df = pd.DataFrame(index=[trait, 'Age', 'Gender'], columns=sample_ids)\n",
    "    \n",
    "    # Fill in the values - assuming clinical_data has the same order of samples\n",
    "    if len(clinical_data) == len(sample_ids):\n",
    "        for i, sample_id in enumerate(sample_ids):\n",
    "            if i < len(clinical_data):\n",
    "                # Get values from clinical_data row i\n",
    "                row = clinical_data.iloc[i]\n",
    "                # Assign values to the new DataFrame\n",
    "                if trait in row:\n",
    "                    new_clinical_df.loc[trait, sample_id] = row[trait]\n",
    "                if 'Age' in row:\n",
    "                    new_clinical_df.loc['Age', sample_id] = row['Age']\n",
    "                if 'Gender' in row:\n",
    "                    new_clinical_df.loc['Gender', sample_id] = row['Gender']\n",
    "    \n",
    "    clinical_data = new_clinical_df\n",
    "\n",
    "# 2. Link clinical and genetic data\n",
    "linked_data = pd.concat([clinical_data, gene_data_mapped], axis=0)\n",
    "print(\"Linked data shape:\", linked_data.shape)\n",
    "print(\"Linked data index preview:\", list(linked_data.index[:10]))\n",
    "\n",
    "# Transpose the linked data to have samples as rows and features as columns\n",
    "linked_data = linked_data.T\n",
    "print(\"Transposed linked data shape:\", linked_data.shape)\n",
    "print(\"Actual columns in linked_data:\", linked_data.columns.tolist()[:10])\n",
    "\n",
    "# 3. Handle missing values - use the trait variable from environment setup\n",
    "linked_data = handle_missing_values(linked_data, trait)\n",
    "print(\"Data shape after handling missing values:\", linked_data.shape)\n",
    "\n",
    "# 4. Determine trait and demographic bias\n",
    "is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)\n",
    "print(f\"Trait bias assessment: {is_biased}\")\n",
    "print(\"Data columns after bias assessment:\", list(linked_data.columns[:10]))\n",
    "\n",
    "# 5. Final quality validation and saving metadata\n",
    "note = \"Used alternative gene mapping approach to extract gene symbols from descriptions.\"\n",
    "is_usable = validate_and_save_cohort_info(\n",
    "    is_final=True,\n",
    "    cohort=cohort,\n",
    "    info_path=json_path, \n",
    "    is_gene_available=True,\n",
    "    is_trait_available=True,\n",
    "    is_biased=is_biased,\n",
    "    df=linked_data,\n",
    "    note=note\n",
    ")\n",
    "\n",
    "# 6. Save linked data if usable\n",
    "if is_usable:\n",
    "    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
    "    linked_data.to_csv(out_data_file, index=True)\n",
    "    print(f\"Linked data saved to {out_data_file}\")\n",
    "else:\n",
    "    print(\"Dataset not usable due to bias or other issues. Linked data not saved.\")"
   ]
  }
 ],
 "metadata": {
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.16"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}