File size: 31,207 Bytes
92d2f89 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "61b25fec",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T06:26:08.890358Z",
"iopub.status.busy": "2025-03-25T06:26:08.890254Z",
"iopub.status.idle": "2025-03-25T06:26:09.048716Z",
"shell.execute_reply": "2025-03-25T06:26:09.048286Z"
}
},
"outputs": [],
"source": [
"import sys\n",
"import os\n",
"sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
"\n",
"# Path Configuration\n",
"from tools.preprocess import *\n",
"\n",
"# Processing context\n",
"trait = \"Alzheimers_Disease\"\n",
"cohort = \"GSE132903\"\n",
"\n",
"# Input paths\n",
"in_trait_dir = \"../../input/GEO/Alzheimers_Disease\"\n",
"in_cohort_dir = \"../../input/GEO/Alzheimers_Disease/GSE132903\"\n",
"\n",
"# Output paths\n",
"out_data_file = \"../../output/preprocess/Alzheimers_Disease/GSE132903.csv\"\n",
"out_gene_data_file = \"../../output/preprocess/Alzheimers_Disease/gene_data/GSE132903.csv\"\n",
"out_clinical_data_file = \"../../output/preprocess/Alzheimers_Disease/clinical_data/GSE132903.csv\"\n",
"json_path = \"../../output/preprocess/Alzheimers_Disease/cohort_info.json\"\n"
]
},
{
"cell_type": "markdown",
"id": "735a22d8",
"metadata": {},
"source": [
"### Step 1: Initial Data Loading"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "7d76ea28",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T06:26:09.049973Z",
"iopub.status.busy": "2025-03-25T06:26:09.049829Z",
"iopub.status.idle": "2025-03-25T06:26:09.485141Z",
"shell.execute_reply": "2025-03-25T06:26:09.484788Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Background Information:\n",
"!Series_title\t\"Transcriptome changes in the Alzheimer's middle temporal gyrus: importance of RNA metabolism and mitochondria-associated membrane (MAM) genes\"\n",
"!Series_summary\t\"We used Illumina Human HT-12 v4 arrays to compare RNA expression of middle temporal gyrus (MTG; BA21) in Alzheimer’s Disease (AD = 97) and non-demented controls (ND = 98). A total of 938 transcripts were highly differentially expressed (adj p < 0.01; log2 Fold Change (FC) ≥ |0.500|, with 411 overexpressed and 527 underexpressed in AD. Our results correlated with expression profiling in neurons from AD and ND obtained by Laser Capture Microscopy in MTG from an independent dataset (log2 FC correlation: r = 0.504; p = 2.2e-16). Additionally selected effects were validated by qPCR. ANOVA analysis yielded no difference between genders in response to AD, but some gender specific genes were detected (e.g: IL8 and AGRN in males, and HSPH1 and GRM1 in females). Several transcripts were associated with Braak Staging (e.g AEBP1 and DNALI1), ante-mortem MMSE (e.g. AEBP1 and GFAP) and Tangle density (eg. RNU1G2, and DNALI1). At the pathway level we detected enrichment of Synaptic Vesicle Processes and GABAergic transmission genes. Finally, applying the Weighted Correlation Network Analysis (WGCNA) we identified 4 expression modules enriched for neuronal and synaptic genes, mitochondria-associated membrane (MAM), chemical stimulus and olfactory receptor and non-coding RNA metabolism genes. Our results represent an extensive description of MTG mRNA profiling in a large sample of AD and ND. These data provide a list of genes associated with AD, and correlated to neurofibrillary tangles density. In addition, these data emphasize the importance of mitochondrial membranes and transcripts related to olfactory receptors in AD.\"\n",
"!Series_overall_design\t\"We compared RNA expression of middle temporal gyrus (MTG; BA21) between Alzheimer’s Disease (AD = 97) and non-demented controls (ND = 98) using Illumina Human HT-12 v4 arrays\"\n",
"Sample Characteristics Dictionary:\n",
"{0: ['tissue: middle temporal gyrus'], 1: ['Sex: female', 'Sex: male'], 2: ['expired_age (years): 90+', 'expired_age (years): 82', 'expired_age (years): 88', 'expired_age (years): 92', 'expired_age (years): 91', 'expired_age (years): 87', 'expired_age (years): 86', 'expired_age (years): 78', 'expired_age (years): 79', 'expired_age (years): 77', 'expired_age (years): 85', 'expired_age (years): 95', 'expired_age (years): 102', 'expired_age (years): 89', 'expired_age (years): 70', 'expired_age (years): 73', 'expired_age (years): 94', 'expired_age (years): 96', 'expired_age (years): 84', 'expired_age (years): 83', 'expired_age (years): 98', 'expired_age (years): 100', 'expired_age (years): 75', 'expired_age (years): 80', 'expired_age (years): 74', 'expired_age (years): 76', 'expired_age (years): 71', 'expired_age (years): 97', 'expired_age (years): 81', 'expired_age (years): 72'], 3: ['diagnosis: ND', 'diagnosis: AD']}\n"
]
}
],
"source": [
"from tools.preprocess import *\n",
"# 1. Identify the paths to the SOFT file and the matrix file\n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"\n",
"# 2. Read the matrix file to obtain background information and sample characteristics data\n",
"background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
"clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
"background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
"\n",
"# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
"sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
"\n",
"# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
"print(\"Background Information:\")\n",
"print(background_info)\n",
"print(\"Sample Characteristics Dictionary:\")\n",
"print(sample_characteristics_dict)\n"
]
},
{
"cell_type": "markdown",
"id": "e75cac64",
"metadata": {},
"source": [
"### Step 2: Dataset Analysis and Clinical Feature Extraction"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "b6117b31",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T06:26:09.486316Z",
"iopub.status.busy": "2025-03-25T06:26:09.486203Z",
"iopub.status.idle": "2025-03-25T06:26:09.491074Z",
"shell.execute_reply": "2025-03-25T06:26:09.490748Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Trait row identified: 3\n",
"Age row identified: 2\n",
"Gender row identified: 1\n",
"The actual clinical data extraction requires the full clinical dataset.\n",
"We've identified the relevant rows and created the conversion functions.\n",
"Metadata saved to ../../output/preprocess/Alzheimers_Disease/cohort_info.json, indicating trait data is available: True\n"
]
}
],
"source": [
"# 1. Determine gene expression data availability\n",
"# From the background info, we see Illumina Human HT-12 v4 arrays were used\n",
"# for RNA expression, which indicates gene expression data.\n",
"is_gene_available = True\n",
"\n",
"# 2. Variable Availability and Data Type Conversion\n",
"# 2.1 Data Availability\n",
"\n",
"# For trait (Alzheimer's Disease), we can use the 'diagnosis' field\n",
"trait_row = 3 # 'diagnosis: ND', 'diagnosis: AD'\n",
"\n",
"# For age, we have 'expired_age (years)' field\n",
"age_row = 2 # Contains ages of participants\n",
"\n",
"# For gender, we have 'Sex' field\n",
"gender_row = 1 # 'Sex: female', 'Sex: male'\n",
"\n",
"# 2.2 Data Type Conversion\n",
"\n",
"def convert_trait(value):\n",
" \"\"\"Convert diagnosis to binary trait value.\"\"\"\n",
" if not value or ':' not in value:\n",
" return None\n",
" \n",
" diagnosis = value.split(':', 1)[1].strip()\n",
" if diagnosis == 'AD':\n",
" return 1 # Alzheimer's Disease\n",
" elif diagnosis == 'ND':\n",
" return 0 # Non-demented control\n",
" else:\n",
" return None\n",
"\n",
"def convert_age(value):\n",
" \"\"\"Convert age string to continuous numeric value.\"\"\"\n",
" if not value or ':' not in value:\n",
" return None\n",
" \n",
" age_str = value.split(':', 1)[1].strip()\n",
" try:\n",
" if age_str.endswith('+'):\n",
" # For 90+, use 90 as the base age\n",
" return float(age_str.replace('+', ''))\n",
" else:\n",
" return float(age_str)\n",
" except ValueError:\n",
" return None\n",
"\n",
"def convert_gender(value):\n",
" \"\"\"Convert gender string to binary.\"\"\"\n",
" if not value or ':' not in value:\n",
" return None\n",
" \n",
" gender = value.split(':', 1)[1].strip().lower()\n",
" if gender == 'female':\n",
" return 0\n",
" elif gender == 'male':\n",
" return 1\n",
" else:\n",
" return None\n",
"\n",
"# 3. Save metadata\n",
"is_trait_available = trait_row is not None\n",
"validate_and_save_cohort_info(\n",
" is_final=False,\n",
" cohort=cohort,\n",
" info_path=json_path,\n",
" is_gene_available=is_gene_available,\n",
" is_trait_available=is_trait_available\n",
")\n",
"\n",
"# 4. Clinical Feature Extraction\n",
"# We have only the sample characteristics dictionary showing unique values,\n",
"# but we need the actual clinical data to perform the extraction.\n",
"# We'll print the information we've gathered for debugging purposes\n",
"if trait_row is not None:\n",
" print(f\"Trait row identified: {trait_row}\")\n",
" print(f\"Age row identified: {age_row}\")\n",
" print(f\"Gender row identified: {gender_row}\")\n",
" print(\"The actual clinical data extraction requires the full clinical dataset.\")\n",
" print(\"We've identified the relevant rows and created the conversion functions.\")\n",
" \n",
" # Since we can't perform the actual extraction without the clinical data,\n",
" # we'll just note that we've saved the metadata indicating the dataset\n",
" # has the necessary trait information\n",
" print(f\"Metadata saved to {json_path}, indicating trait data is available: {is_trait_available}\")\n"
]
},
{
"cell_type": "markdown",
"id": "105081e9",
"metadata": {},
"source": [
"### Step 3: Gene Data Extraction"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "2e2b60b1",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T06:26:09.492223Z",
"iopub.status.busy": "2025-03-25T06:26:09.491949Z",
"iopub.status.idle": "2025-03-25T06:26:10.306417Z",
"shell.execute_reply": "2025-03-25T06:26:10.305970Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"First 20 gene/probe identifiers:\n",
"Index(['ILMN_1343291', 'ILMN_1343295', 'ILMN_1651199', 'ILMN_1651209',\n",
" 'ILMN_1651210', 'ILMN_1651221', 'ILMN_1651228', 'ILMN_1651229',\n",
" 'ILMN_1651230', 'ILMN_1651232', 'ILMN_1651235', 'ILMN_1651236',\n",
" 'ILMN_1651237', 'ILMN_1651249', 'ILMN_1651254', 'ILMN_1651259',\n",
" 'ILMN_1651260', 'ILMN_1651262', 'ILMN_1651268', 'ILMN_1651278'],\n",
" dtype='object', name='ID')\n"
]
}
],
"source": [
"# 1. First get the file paths again to access the matrix file\n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"\n",
"# 2. Use the get_genetic_data function from the library to get the gene_data from the matrix_file\n",
"gene_data = get_genetic_data(matrix_file)\n",
"\n",
"# 3. Print the first 20 row IDs (gene or probe identifiers) for future observation\n",
"print(\"First 20 gene/probe identifiers:\")\n",
"print(gene_data.index[:20])\n"
]
},
{
"cell_type": "markdown",
"id": "8d212a12",
"metadata": {},
"source": [
"### Step 4: Gene Identifier Review"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "767abff7",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T06:26:10.307753Z",
"iopub.status.busy": "2025-03-25T06:26:10.307641Z",
"iopub.status.idle": "2025-03-25T06:26:10.309642Z",
"shell.execute_reply": "2025-03-25T06:26:10.309340Z"
}
},
"outputs": [],
"source": [
"# Analyzing the gene identifiers\n",
"# The identifiers follow the \"ILMN_\" prefix pattern, which indicates they are Illumina probe IDs\n",
"# These are not human gene symbols but Illumina BeadArray probe identifiers that need to be mapped to gene symbols\n",
"\n",
"requires_gene_mapping = True\n"
]
},
{
"cell_type": "markdown",
"id": "c73d7a1a",
"metadata": {},
"source": [
"### Step 5: Gene Annotation"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "101fd4c3",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T06:26:10.310760Z",
"iopub.status.busy": "2025-03-25T06:26:10.310656Z",
"iopub.status.idle": "2025-03-25T06:26:25.249620Z",
"shell.execute_reply": "2025-03-25T06:26:25.248954Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Gene annotation preview:\n",
"{'ID': ['ILMN_1343048', 'ILMN_1343049', 'ILMN_1343050', 'ILMN_1343052', 'ILMN_1343059'], 'Species': [nan, nan, nan, nan, nan], 'Source': [nan, nan, nan, nan, nan], 'Search_Key': [nan, nan, nan, nan, nan], 'Transcript': [nan, nan, nan, nan, nan], 'ILMN_Gene': [nan, nan, nan, nan, nan], 'Source_Reference_ID': [nan, nan, nan, nan, nan], 'RefSeq_ID': [nan, nan, nan, nan, nan], 'Unigene_ID': [nan, nan, nan, nan, nan], 'Entrez_Gene_ID': [nan, nan, nan, nan, nan], 'GI': [nan, nan, nan, nan, nan], 'Accession': [nan, nan, nan, nan, nan], 'Symbol': ['phage_lambda_genome', 'phage_lambda_genome', 'phage_lambda_genome:low', 'phage_lambda_genome:low', 'thrB'], 'Protein_Product': [nan, nan, nan, nan, 'thrB'], 'Probe_Id': [nan, nan, nan, nan, nan], 'Array_Address_Id': [5090180.0, 6510136.0, 7560739.0, 1450438.0, 1240647.0], 'Probe_Type': [nan, nan, nan, nan, nan], 'Probe_Start': [nan, nan, nan, nan, nan], 'SEQUENCE': ['GAATAAAGAACAATCTGCTGATGATCCCTCCGTGGATCTGATTCGTGTAA', 'CCATGTGATACGAGGGCGCGTAGTTTGCATTATCGTTTTTATCGTTTCAA', 'CCGACAGATGTATGTAAGGCCAACGTGCTCAAATCTTCATACAGAAAGAT', 'TCTGTCACTGTCAGGAAAGTGGTAAAACTGCAACTCAATTACTGCAATGC', 'CTTGTGCCTGAGCTGTCAAAAGTAGAGCACGTCGCCGAGATGAAGGGCGC'], 'Chromosome': [nan, nan, nan, nan, nan], 'Probe_Chr_Orientation': [nan, nan, nan, nan, nan], 'Probe_Coordinates': [nan, nan, nan, nan, nan], 'Cytoband': [nan, nan, nan, nan, nan], 'Definition': [nan, nan, nan, nan, nan], 'Ontology_Component': [nan, nan, nan, nan, nan], 'Ontology_Process': [nan, nan, nan, nan, nan], 'Ontology_Function': [nan, nan, nan, nan, nan], 'Synonyms': [nan, nan, nan, nan, nan], 'Obsolete_Probe_Id': [nan, nan, nan, nan, nan], 'GB_ACC': [nan, nan, nan, nan, nan]}\n"
]
}
],
"source": [
"# 1. First get the file paths using geo_get_relevant_filepaths function\n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"\n",
"# 2. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.\n",
"gene_annotation = get_gene_annotation(soft_file)\n",
"\n",
"# 3. Use the 'preview_df' function from the library to preview the data and print out the results.\n",
"print(\"Gene annotation preview:\")\n",
"print(preview_df(gene_annotation))\n"
]
},
{
"cell_type": "markdown",
"id": "5954ce72",
"metadata": {},
"source": [
"### Step 6: Gene Identifier Mapping"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "47b5fa78",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T06:26:25.251668Z",
"iopub.status.busy": "2025-03-25T06:26:25.251512Z",
"iopub.status.idle": "2025-03-25T06:26:25.816918Z",
"shell.execute_reply": "2025-03-25T06:26:25.816282Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Gene mapping (first 5 rows):\n",
" ID Gene\n",
"0 ILMN_1343048 phage_lambda_genome\n",
"1 ILMN_1343049 phage_lambda_genome\n",
"2 ILMN_1343050 phage_lambda_genome:low\n",
"3 ILMN_1343052 phage_lambda_genome:low\n",
"4 ILMN_1343059 thrB\n",
"\n",
"Gene expression data after mapping (first 5 genes):\n",
"Index(['A1BG', 'A1CF', 'A26C3', 'A2BP1', 'A2M'], dtype='object', name='Gene')\n",
"Total number of genes after mapping: 19788\n"
]
}
],
"source": [
"# 1. Determine which columns to use for gene identifier mapping\n",
"# From the gene annotation preview, 'ID' column contains the probe identifiers matching the gene expression data index\n",
"# The 'Symbol' column contains the gene symbols we want to map to\n",
"probe_col = 'ID'\n",
"gene_col = 'Symbol'\n",
"\n",
"# 2. Get the gene mapping dataframe by extracting the identifier and symbol columns\n",
"gene_mapping = get_gene_mapping(gene_annotation, probe_col, gene_col)\n",
"\n",
"# Print first few rows of the mapping\n",
"print(\"Gene mapping (first 5 rows):\")\n",
"print(gene_mapping.head())\n",
"\n",
"# 3. Apply the gene mapping to convert probe-level measurements to gene expression data\n",
"gene_data = apply_gene_mapping(gene_data, gene_mapping)\n",
"\n",
"# Print the first few genes \n",
"print(\"\\nGene expression data after mapping (first 5 genes):\")\n",
"print(gene_data.index[:5])\n",
"print(f\"Total number of genes after mapping: {len(gene_data)}\")\n"
]
},
{
"cell_type": "markdown",
"id": "25c65742",
"metadata": {},
"source": [
"### Step 7: Data Normalization and Linking"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "fa6d05f5",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T06:26:25.818815Z",
"iopub.status.busy": "2025-03-25T06:26:25.818689Z",
"iopub.status.idle": "2025-03-25T06:26:45.510809Z",
"shell.execute_reply": "2025-03-25T06:26:45.510103Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Normalizing gene symbols...\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Gene data shape after normalization: (18799, 195)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Normalized gene data saved to ../../output/preprocess/Alzheimers_Disease/gene_data/GSE132903.csv\n",
"Loading the original clinical data...\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Extracting clinical features...\n",
"Clinical data preview:\n",
"{'GSM3895951': [0.0, 90.0, 0.0], 'GSM3895952': [0.0, 82.0, 1.0], 'GSM3895953': [0.0, 88.0, 0.0], 'GSM3895954': [0.0, 92.0, 0.0], 'GSM3895955': [0.0, 91.0, 1.0], 'GSM3895956': [0.0, 87.0, 0.0], 'GSM3895957': [0.0, 86.0, 1.0], 'GSM3895958': [0.0, 78.0, 1.0], 'GSM3895959': [0.0, 87.0, 1.0], 'GSM3895960': [0.0, 79.0, 1.0], 'GSM3895961': [0.0, 77.0, 0.0], 'GSM3895962': [0.0, 77.0, 1.0], 'GSM3895963': [0.0, 88.0, 0.0], 'GSM3895964': [0.0, 85.0, 1.0], 'GSM3895965': [0.0, 95.0, 0.0], 'GSM3895966': [0.0, 102.0, 0.0], 'GSM3895967': [0.0, 89.0, 1.0], 'GSM3895968': [0.0, 70.0, 1.0], 'GSM3895969': [0.0, 82.0, 0.0], 'GSM3895970': [0.0, 73.0, 0.0], 'GSM3895971': [0.0, 90.0, 1.0], 'GSM3895972': [0.0, 94.0, 1.0], 'GSM3895973': [0.0, 96.0, 0.0], 'GSM3895974': [0.0, 85.0, 0.0], 'GSM3895975': [0.0, 84.0, 1.0], 'GSM3895976': [0.0, 83.0, 1.0], 'GSM3895977': [0.0, 90.0, 0.0], 'GSM3895978': [0.0, 87.0, 0.0], 'GSM3895979': [0.0, 85.0, 1.0], 'GSM3895980': [0.0, 83.0, 0.0], 'GSM3895981': [0.0, 84.0, 1.0], 'GSM3895982': [0.0, 88.0, 1.0], 'GSM3895983': [0.0, 98.0, 0.0], 'GSM3895984': [0.0, 85.0, 1.0], 'GSM3895985': [0.0, 86.0, 0.0], 'GSM3895986': [0.0, 87.0, 0.0], 'GSM3895987': [0.0, 89.0, 1.0], 'GSM3895988': [0.0, 92.0, 1.0], 'GSM3895989': [0.0, 78.0, 0.0], 'GSM3895990': [0.0, 77.0, 0.0], 'GSM3895991': [0.0, 91.0, 1.0], 'GSM3895992': [0.0, 100.0, 1.0], 'GSM3895993': [0.0, 82.0, 1.0], 'GSM3895994': [0.0, 87.0, 0.0], 'GSM3895995': [0.0, 73.0, 1.0], 'GSM3895996': [0.0, 75.0, 1.0], 'GSM3895997': [0.0, 82.0, 1.0], 'GSM3895998': [0.0, 90.0, 0.0], 'GSM3895999': [0.0, 96.0, 0.0], 'GSM3896000': [0.0, 84.0, 0.0], 'GSM3896001': [0.0, 80.0, 1.0], 'GSM3896002': [0.0, 86.0, 1.0], 'GSM3896003': [0.0, 91.0, 0.0], 'GSM3896004': [0.0, 91.0, 0.0], 'GSM3896005': [0.0, 94.0, 0.0], 'GSM3896006': [0.0, 87.0, 1.0], 'GSM3896007': [0.0, 75.0, 0.0], 'GSM3896008': [0.0, 74.0, 1.0], 'GSM3896009': [0.0, 76.0, 1.0], 'GSM3896010': [0.0, 71.0, 1.0], 'GSM3896011': [0.0, 87.0, 1.0], 'GSM3896012': [0.0, 90.0, 1.0], 'GSM3896013': [0.0, 80.0, 1.0], 'GSM3896014': [0.0, 84.0, 1.0], 'GSM3896015': [0.0, 80.0, 1.0], 'GSM3896016': [0.0, 89.0, 1.0], 'GSM3896017': [0.0, 86.0, 0.0], 'GSM3896018': [0.0, 80.0, 0.0], 'GSM3896019': [0.0, 92.0, 1.0], 'GSM3896020': [0.0, 83.0, 0.0], 'GSM3896021': [0.0, 86.0, 0.0], 'GSM3896022': [0.0, 91.0, 0.0], 'GSM3896023': [0.0, 95.0, 0.0], 'GSM3896024': [0.0, 95.0, 0.0], 'GSM3896025': [0.0, 82.0, 0.0], 'GSM3896026': [0.0, 85.0, 0.0], 'GSM3896027': [0.0, 87.0, 0.0], 'GSM3896028': [0.0, 95.0, 1.0], 'GSM3896029': [0.0, 85.0, 0.0], 'GSM3896030': [0.0, 91.0, 0.0], 'GSM3896031': [0.0, 89.0, 0.0], 'GSM3896032': [1.0, 80.0, 1.0], 'GSM3896033': [1.0, 87.0, 0.0], 'GSM3896034': [1.0, 92.0, 0.0], 'GSM3896035': [1.0, 77.0, 0.0], 'GSM3896036': [1.0, 84.0, 0.0], 'GSM3896037': [1.0, 91.0, 0.0], 'GSM3896038': [1.0, 87.0, 0.0], 'GSM3896039': [1.0, 97.0, 0.0], 'GSM3896040': [1.0, 87.0, 0.0], 'GSM3896041': [1.0, 78.0, 1.0], 'GSM3896042': [1.0, 76.0, 1.0], 'GSM3896043': [1.0, 81.0, 1.0], 'GSM3896044': [1.0, 80.0, 1.0], 'GSM3896045': [1.0, 86.0, 0.0], 'GSM3896046': [1.0, 81.0, 0.0], 'GSM3896047': [1.0, 79.0, 1.0], 'GSM3896048': [1.0, 91.0, 0.0], 'GSM3896049': [1.0, 91.0, 0.0], 'GSM3896050': [1.0, 89.0, 0.0], 'GSM3896051': [1.0, 82.0, 0.0], 'GSM3896052': [1.0, 92.0, 0.0], 'GSM3896053': [1.0, 86.0, 1.0], 'GSM3896054': [1.0, 82.0, 0.0], 'GSM3896055': [1.0, 86.0, 0.0], 'GSM3896056': [1.0, 80.0, 1.0], 'GSM3896057': [1.0, 87.0, 0.0], 'GSM3896058': [1.0, 92.0, 1.0], 'GSM3896059': [1.0, 90.0, 0.0], 'GSM3896060': [1.0, 88.0, 0.0], 'GSM3896061': [1.0, 90.0, 1.0], 'GSM3896062': [1.0, 90.0, 1.0], 'GSM3896063': [1.0, 72.0, 1.0], 'GSM3896064': [1.0, 87.0, 1.0], 'GSM3896065': [1.0, 75.0, 1.0], 'GSM3896066': [1.0, 86.0, 0.0], 'GSM3896067': [1.0, 95.0, 0.0], 'GSM3896068': [1.0, 95.0, 1.0], 'GSM3896069': [1.0, 88.0, 0.0], 'GSM3896070': [1.0, 87.0, 1.0], 'GSM3896071': [1.0, 81.0, 0.0], 'GSM3896072': [1.0, 83.0, 1.0], 'GSM3896073': [1.0, 85.0, 0.0], 'GSM3896074': [1.0, 95.0, 0.0], 'GSM3896075': [1.0, 81.0, 1.0], 'GSM3896076': [1.0, 83.0, 1.0], 'GSM3896077': [1.0, 85.0, 1.0], 'GSM3896078': [1.0, 85.0, 0.0], 'GSM3896079': [1.0, 94.0, 1.0], 'GSM3896080': [1.0, 97.0, 1.0], 'GSM3896081': [1.0, 82.0, 0.0], 'GSM3896082': [1.0, 91.0, 1.0], 'GSM3896083': [1.0, 92.0, 1.0], 'GSM3896084': [1.0, 70.0, 1.0], 'GSM3896085': [1.0, 84.0, 1.0], 'GSM3896086': [1.0, 86.0, 1.0], 'GSM3896087': [1.0, 95.0, 0.0], 'GSM3896088': [1.0, 88.0, 1.0], 'GSM3896089': [1.0, 79.0, 1.0], 'GSM3896090': [1.0, 87.0, 1.0], 'GSM3896091': [1.0, 73.0, 0.0], 'GSM3896092': [1.0, 90.0, 0.0], 'GSM3896093': [1.0, 83.0, 1.0], 'GSM3896094': [1.0, 85.0, 0.0], 'GSM3896095': [1.0, 74.0, 1.0], 'GSM3896096': [1.0, 71.0, 1.0], 'GSM3896097': [1.0, 78.0, 0.0], 'GSM3896098': [1.0, 82.0, 1.0], 'GSM3896099': [1.0, 85.0, 1.0], 'GSM3896100': [1.0, 96.0, 0.0], 'GSM3896101': [1.0, 70.0, 0.0], 'GSM3896102': [1.0, 78.0, 0.0], 'GSM3896103': [1.0, 77.0, 0.0], 'GSM3896104': [1.0, 87.0, 0.0], 'GSM3896105': [1.0, 84.0, 1.0], 'GSM3896106': [1.0, 98.0, 1.0], 'GSM3896107': [1.0, 75.0, 1.0], 'GSM3896108': [1.0, 76.0, 1.0], 'GSM3896109': [1.0, 94.0, 0.0], 'GSM3896110': [1.0, 84.0, 1.0], 'GSM3896111': [1.0, 75.0, 0.0], 'GSM3896112': [0.0, 75.0, 1.0], 'GSM3896113': [0.0, 92.0, 0.0], 'GSM3896114': [0.0, 81.0, 0.0], 'GSM3896115': [0.0, 77.0, 0.0], 'GSM3896116': [1.0, 88.0, 1.0], 'GSM3896117': [1.0, 87.0, 0.0], 'GSM3896118': [1.0, 77.0, 0.0], 'GSM3896119': [1.0, 93.0, 1.0], 'GSM3896120': [1.0, 97.0, 0.0], 'GSM3896121': [1.0, 89.0, 1.0], 'GSM3896122': [1.0, 88.0, 1.0], 'GSM3896123': [1.0, 73.0, 1.0], 'GSM3896124': [1.0, 91.0, 0.0], 'GSM3896125': [1.0, 91.0, 0.0], 'GSM3896126': [0.0, 78.0, 0.0], 'GSM3896127': [1.0, 89.0, 1.0], 'GSM3896128': [1.0, 78.0, 0.0], 'GSM3896129': [1.0, 90.0, 0.0], 'GSM3896130': [1.0, 85.0, 1.0], 'GSM3896131': [1.0, 85.0, 0.0], 'GSM3896132': [1.0, 82.0, 1.0], 'GSM3896133': [1.0, 82.0, 1.0], 'GSM3896134': [0.0, 72.0, 1.0], 'GSM3896135': [0.0, 82.0, 0.0], 'GSM3896136': [0.0, 81.0, 0.0], 'GSM3896137': [0.0, 81.0, 1.0], 'GSM3896138': [0.0, 79.0, 1.0], 'GSM3896139': [0.0, 91.0, 1.0], 'GSM3896140': [0.0, 81.0, 1.0], 'GSM3896141': [0.0, 70.0, 0.0], 'GSM3896142': [0.0, 76.0, 1.0], 'GSM3896143': [0.0, 90.0, 1.0], 'GSM3896144': [0.0, 83.0, 1.0], 'GSM3896145': [0.0, 83.0, 1.0]}\n",
"Clinical data saved to ../../output/preprocess/Alzheimers_Disease/clinical_data/GSE132903.csv\n",
"Linking clinical and genetic data...\n",
"Linked data shape: (195, 18802)\n",
"Handling missing values...\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Linked data shape after handling missing values: (195, 18802)\n",
"Checking for bias in trait distribution...\n",
"For the feature 'Alzheimers_Disease', the least common label is '1.0' with 97 occurrences. This represents 49.74% of the dataset.\n",
"The distribution of the feature 'Alzheimers_Disease' in this dataset is fine.\n",
"\n",
"Quartiles for 'Age':\n",
" 25%: 80.5\n",
" 50% (Median): 85.0\n",
" 75%: 90.0\n",
"Min: 70.0\n",
"Max: 102.0\n",
"The distribution of the feature 'Age' in this dataset is fine.\n",
"\n",
"For the feature 'Gender', the least common label is '0.0' with 96 occurrences. This represents 49.23% of the dataset.\n",
"The distribution of the feature 'Gender' in this dataset is fine.\n",
"\n",
"Dataset usability: True\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Linked data saved to ../../output/preprocess/Alzheimers_Disease/GSE132903.csv\n"
]
}
],
"source": [
"# 1. Normalize gene symbols in the gene expression data\n",
"print(\"Normalizing gene symbols...\")\n",
"normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n",
"print(f\"Gene data shape after normalization: {normalized_gene_data.shape}\")\n",
"\n",
"# Save the normalized gene data to a CSV file\n",
"os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
"normalized_gene_data.to_csv(out_gene_data_file)\n",
"print(f\"Normalized gene data saved to {out_gene_data_file}\")\n",
"\n",
"# 2. Link the clinical and genetic data\n",
"print(\"Loading the original clinical data...\")\n",
"# Get the matrix file again to ensure we have the proper data\n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"background_info, clinical_data = get_background_and_clinical_data(matrix_file)\n",
"\n",
"print(\"Extracting clinical features...\")\n",
"# Use the clinical_data obtained directly from the matrix file\n",
"selected_clinical_df = geo_select_clinical_features(\n",
" clinical_df=clinical_data,\n",
" trait=trait,\n",
" trait_row=trait_row,\n",
" convert_trait=convert_trait,\n",
" age_row=age_row,\n",
" convert_age=convert_age,\n",
" gender_row=gender_row,\n",
" convert_gender=convert_gender\n",
")\n",
"\n",
"print(\"Clinical data preview:\")\n",
"print(preview_df(selected_clinical_df))\n",
"\n",
"# Save the clinical data to a CSV file\n",
"os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
"selected_clinical_df.to_csv(out_clinical_data_file)\n",
"print(f\"Clinical data saved to {out_clinical_data_file}\")\n",
"\n",
"# Link clinical and genetic data using the normalized gene data\n",
"print(\"Linking clinical and genetic data...\")\n",
"linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)\n",
"print(f\"Linked data shape: {linked_data.shape}\")\n",
"\n",
"# 3. Handle missing values in the linked data\n",
"print(\"Handling missing values...\")\n",
"linked_data = handle_missing_values(linked_data, trait)\n",
"print(f\"Linked data shape after handling missing values: {linked_data.shape}\")\n",
"\n",
"# 4. Check if trait is biased\n",
"print(\"Checking for bias in trait distribution...\")\n",
"is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)\n",
"\n",
"# 5. Final validation\n",
"note = \"Dataset contains gene expression data from bronchial brushings from control individuals and patients with asthma after rhinovirus infection in vivo, as described in the study 'Rhinovirus-induced epithelial RIG-I inflammasome suppresses antiviral immunity and promotes inflammation in asthma and COVID-19'.\"\n",
"is_usable = validate_and_save_cohort_info(\n",
" is_final=True,\n",
" cohort=cohort,\n",
" info_path=json_path,\n",
" is_gene_available=is_gene_available,\n",
" is_trait_available=is_trait_available,\n",
" is_biased=is_biased,\n",
" df=linked_data,\n",
" note=note\n",
")\n",
"\n",
"print(f\"Dataset usability: {is_usable}\")\n",
"\n",
"# 6. Save linked data if usable\n",
"if is_usable:\n",
" os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
" linked_data.to_csv(out_data_file)\n",
" print(f\"Linked data saved to {out_data_file}\")\n",
"else:\n",
" print(\"Dataset is not usable for trait-gene association studies due to bias or other issues.\")"
]
}
],
"metadata": {
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.16"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|