File size: 23,744 Bytes
d1894e4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 |
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"id": "bbc640a5",
"metadata": {},
"outputs": [],
"source": [
"import sys\n",
"import os\n",
"sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
"\n",
"# Path Configuration\n",
"from tools.preprocess import *\n",
"\n",
"# Processing context\n",
"trait = \"Gastroesophageal_reflux_disease_(GERD)\"\n",
"cohort = \"GSE77563\"\n",
"\n",
"# Input paths\n",
"in_trait_dir = \"../../input/GEO/Gastroesophageal_reflux_disease_(GERD)\"\n",
"in_cohort_dir = \"../../input/GEO/Gastroesophageal_reflux_disease_(GERD)/GSE77563\"\n",
"\n",
"# Output paths\n",
"out_data_file = \"../../output/preprocess/Gastroesophageal_reflux_disease_(GERD)/GSE77563.csv\"\n",
"out_gene_data_file = \"../../output/preprocess/Gastroesophageal_reflux_disease_(GERD)/gene_data/GSE77563.csv\"\n",
"out_clinical_data_file = \"../../output/preprocess/Gastroesophageal_reflux_disease_(GERD)/clinical_data/GSE77563.csv\"\n",
"json_path = \"../../output/preprocess/Gastroesophageal_reflux_disease_(GERD)/cohort_info.json\"\n"
]
},
{
"cell_type": "markdown",
"id": "e790ff46",
"metadata": {},
"source": [
"### Step 1: Initial Data Loading"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d39fbcc3",
"metadata": {},
"outputs": [],
"source": [
"from tools.preprocess import *\n",
"# 1. Identify the paths to the SOFT file and the matrix file\n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"\n",
"# 2. Read the matrix file to obtain background information and sample characteristics data\n",
"background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
"clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
"background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
"\n",
"# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
"sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
"\n",
"# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
"print(\"Background Information:\")\n",
"print(background_info)\n",
"print(\"Sample Characteristics Dictionary:\")\n",
"print(sample_characteristics_dict)\n"
]
},
{
"cell_type": "markdown",
"id": "e43ecd56",
"metadata": {},
"source": [
"### Step 2: Dataset Analysis and Clinical Feature Extraction"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "62084be8",
"metadata": {},
"outputs": [],
"source": [
"# 1. Analyze gene expression data availability\n",
"# Based on the background information, this dataset contains Affymetrix expression array profiles\n",
"# which indicates it's likely to contain gene expression data\n",
"is_gene_available = True # Affymetrix Human Gene 2.1 ST arrays data is available\n",
"\n",
"# 2. Analyze variable availability and data type conversion\n",
"# 2.1 Data Availability\n",
"\n",
"# For trait (GERD):\n",
"# Key 5 contains GERD status information\n",
"trait_row = 5\n",
"\n",
"# For age:\n",
"# Key 1 contains age information\n",
"age_row = 1\n",
"\n",
"# For gender:\n",
"# Key 2 contains gender information\n",
"gender_row = 2\n",
"\n",
"# 2.2 Data Type Conversion\n",
"\n",
"# For trait (GERD):\n",
"def convert_trait(value):\n",
" if pd.isna(value):\n",
" return None\n",
" \n",
" # Extract the value after the colon\n",
" if \":\" in value:\n",
" value = value.split(\":\", 1)[1].strip()\n",
" \n",
" # Convert to binary (0 for No GERD, 1 for GERD)\n",
" if \"No GERD\" in value:\n",
" return 0\n",
" elif \"GERD\" in value:\n",
" return 1\n",
" else:\n",
" return None\n",
"\n",
"# For age:\n",
"def convert_age(value):\n",
" if pd.isna(value):\n",
" return None\n",
" \n",
" # Extract the value after the colon\n",
" if \":\" in value:\n",
" value = value.split(\":\", 1)[1].strip()\n",
" \n",
" # Convert to continuous\n",
" try:\n",
" return float(value)\n",
" except:\n",
" return None\n",
"\n",
"# For gender:\n",
"def convert_gender(value):\n",
" if pd.isna(value):\n",
" return None\n",
" \n",
" # Extract the value after the colon\n",
" if \":\" in value:\n",
" value = value.split(\":\", 1)[1].strip()\n",
" \n",
" # Convert to binary (0 for female, 1 for male)\n",
" if \"female\" in value.lower():\n",
" return 0\n",
" elif \"male\" in value.lower():\n",
" return 1\n",
" else:\n",
" return None\n",
"\n",
"# 3. Save Metadata\n",
"# Determine if trait data is available\n",
"is_trait_available = trait_row is not None\n",
"\n",
"# Initial filtering and save metadata\n",
"validate_and_save_cohort_info(\n",
" is_final=False,\n",
" cohort=cohort,\n",
" info_path=json_path,\n",
" is_gene_available=is_gene_available,\n",
" is_trait_available=is_trait_available\n",
")\n",
"\n",
"# 4. Clinical Feature Extraction\n",
"if trait_row is not None:\n",
" # Extract clinical features\n",
" selected_clinical_df = geo_select_clinical_features(\n",
" clinical_df=clinical_data,\n",
" trait=trait,\n",
" trait_row=trait_row,\n",
" convert_trait=convert_trait,\n",
" age_row=age_row,\n",
" convert_age=convert_age,\n",
" gender_row=gender_row,\n",
" convert_gender=convert_gender\n",
" )\n",
" \n",
" # Preview the extracted clinical data\n",
" print(\"Preview of extracted clinical data:\")\n",
" print(preview_df(selected_clinical_df))\n",
" \n",
" # Save the clinical data\n",
" os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
" selected_clinical_df.to_csv(out_clinical_data_file, index=False)\n",
" print(f\"Clinical data saved to {out_clinical_data_file}\")\n"
]
},
{
"cell_type": "markdown",
"id": "0340368b",
"metadata": {},
"source": [
"### Step 3: Gene Data Extraction"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "33feb428",
"metadata": {},
"outputs": [],
"source": [
"# 1. Get the file paths for the SOFT file and matrix file\n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"\n",
"# 2. First, let's examine the structure of the matrix file to understand its format\n",
"import gzip\n",
"\n",
"# Peek at the first few lines of the file to understand its structure\n",
"with gzip.open(matrix_file, 'rt') as file:\n",
" # Read first 100 lines to find the header structure\n",
" for i, line in enumerate(file):\n",
" if '!series_matrix_table_begin' in line:\n",
" print(f\"Found data marker at line {i}\")\n",
" # Read the next line which should be the header\n",
" header_line = next(file)\n",
" print(f\"Header line: {header_line.strip()}\")\n",
" # And the first data line\n",
" first_data_line = next(file)\n",
" print(f\"First data line: {first_data_line.strip()}\")\n",
" break\n",
" if i > 100: # Limit search to first 100 lines\n",
" print(\"Matrix table marker not found in first 100 lines\")\n",
" break\n",
"\n",
"# 3. Now try to get the genetic data with better error handling\n",
"try:\n",
" gene_data = get_genetic_data(matrix_file)\n",
" print(gene_data.index[:20])\n",
"except KeyError as e:\n",
" print(f\"KeyError: {e}\")\n",
" \n",
" # Alternative approach: manually extract the data\n",
" print(\"\\nTrying alternative approach to read the gene data:\")\n",
" with gzip.open(matrix_file, 'rt') as file:\n",
" # Find the start of the data\n",
" for line in file:\n",
" if '!series_matrix_table_begin' in line:\n",
" break\n",
" \n",
" # Read the headers and data\n",
" import pandas as pd\n",
" df = pd.read_csv(file, sep='\\t', index_col=0)\n",
" print(f\"Column names: {df.columns[:5]}\")\n",
" print(f\"First 20 row IDs: {df.index[:20]}\")\n",
" gene_data = df\n"
]
},
{
"cell_type": "markdown",
"id": "7f217182",
"metadata": {},
"source": [
"### Step 4: Gene Identifier Review"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "00fdd04f",
"metadata": {},
"outputs": [],
"source": [
"# The identifiers seen in the gene expression data (16657436, 16657445, etc.) appear to be \n",
"# Affymetrix probeset IDs rather than human gene symbols. These are numeric identifiers \n",
"# specific to the microarray platform used in this study.\n",
"#\n",
"# Standard human gene symbols would typically be alphabetic (like \"BRCA1\", \"TP53\", etc.) \n",
"# or alphanumeric combinations that follow a recognizable pattern.\n",
"#\n",
"# These numeric IDs will need to be mapped to standard gene symbols for meaningful analysis.\n",
"\n",
"requires_gene_mapping = True\n"
]
},
{
"cell_type": "markdown",
"id": "0b8f0a47",
"metadata": {},
"source": [
"### Step 5: Gene Annotation"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "790eea20",
"metadata": {},
"outputs": [],
"source": [
"# 1. Let's first examine the structure of the SOFT file before trying to parse it\n",
"import gzip\n",
"\n",
"# Look at the first few lines of the SOFT file to understand its structure\n",
"print(\"Examining SOFT file structure:\")\n",
"try:\n",
" with gzip.open(soft_file, 'rt') as file:\n",
" # Read first 20 lines to understand the file structure\n",
" for i, line in enumerate(file):\n",
" if i < 20:\n",
" print(f\"Line {i}: {line.strip()}\")\n",
" else:\n",
" break\n",
"except Exception as e:\n",
" print(f\"Error reading SOFT file: {e}\")\n",
"\n",
"# 2. Now let's try a more robust approach to extract the gene annotation\n",
"# Instead of using the library function which failed, we'll implement a custom approach\n",
"try:\n",
" # First, look for the platform section which contains gene annotation\n",
" platform_data = []\n",
" with gzip.open(soft_file, 'rt') as file:\n",
" in_platform_section = False\n",
" for line in file:\n",
" if line.startswith('^PLATFORM'):\n",
" in_platform_section = True\n",
" continue\n",
" if in_platform_section and line.startswith('!platform_table_begin'):\n",
" # Next line should be the header\n",
" header = next(file).strip()\n",
" platform_data.append(header)\n",
" # Read until the end of the platform table\n",
" for table_line in file:\n",
" if table_line.startswith('!platform_table_end'):\n",
" break\n",
" platform_data.append(table_line.strip())\n",
" break\n",
" \n",
" # If we found platform data, convert it to a DataFrame\n",
" if platform_data:\n",
" import pandas as pd\n",
" import io\n",
" platform_text = '\\n'.join(platform_data)\n",
" gene_annotation = pd.read_csv(io.StringIO(platform_text), delimiter='\\t', \n",
" low_memory=False, on_bad_lines='skip')\n",
" print(\"\\nGene annotation preview:\")\n",
" print(preview_df(gene_annotation))\n",
" else:\n",
" print(\"Could not find platform table in SOFT file\")\n",
" \n",
" # Try an alternative approach - extract mapping from other sections\n",
" with gzip.open(soft_file, 'rt') as file:\n",
" for line in file:\n",
" if 'ANNOTATION information' in line or 'annotation information' in line:\n",
" print(f\"Found annotation information: {line.strip()}\")\n",
" if line.startswith('!Platform_title') or line.startswith('!platform_title'):\n",
" print(f\"Platform title: {line.strip()}\")\n",
" \n",
"except Exception as e:\n",
" print(f\"Error processing gene annotation: {e}\")\n"
]
},
{
"cell_type": "markdown",
"id": "91185d03",
"metadata": {},
"source": [
"### Step 6: Gene Identifier Mapping"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "9d3902d0",
"metadata": {},
"outputs": [],
"source": [
"# 1. First, make sure we have the gene expression data loaded properly\n",
"gene_data = get_genetic_data(matrix_file)\n",
"\n",
"# 2. Extract and prepare the gene mapping dataframe\n",
"# Looking at the data, 'ID' contains the numeric identifiers that match the gene expression data\n",
"# The 'gene_assignment' column contains gene symbol information\n",
"mapping_df = gene_annotation[['ID', 'gene_assignment']]\n",
"\n",
"# Convert IDs to strings for consistent comparison\n",
"mapping_df['ID'] = mapping_df['ID'].astype(str)\n",
"\n",
"# 3. Extract gene symbols from the complex gene_assignment field\n",
"# Use the built-in extract_human_gene_symbols function which is more robust\n",
"# It's able to identify gene symbols from complex text following standard patterns\n",
"mapping_df['Gene'] = mapping_df['gene_assignment'].apply(extract_human_gene_symbols)\n",
"\n",
"# Print diagnostic information about the mapping\n",
"print(f\"Number of probes in gene_data: {len(gene_data.index)}\")\n",
"print(f\"Original mapping rows: {len(mapping_df)}\")\n",
"print(f\"Sample of original mappings:\")\n",
"print(mapping_df[['ID', 'Gene']].head(5))\n",
"\n",
"# Filter out mappings with empty gene lists\n",
"mapping_df = mapping_df[mapping_df['Gene'].apply(len) > 0]\n",
"print(f\"Filtered mapping rows: {len(mapping_df)}\")\n",
"print(f\"Number of mappable probes: {len(mapping_df[mapping_df['ID'].isin(gene_data.index)])}\")\n",
"\n",
"# 4. Apply the gene mapping to get gene expression data\n",
"gene_data = apply_gene_mapping(gene_data, mapping_df[['ID', 'Gene']])\n",
"\n",
"# Check data before normalization\n",
"print(f\"\\nBefore normalization - shape: {gene_data.shape}\")\n",
"print(f\"Sample gene symbols before normalization: {list(gene_data.index[:10])}\")\n",
"\n",
"# 5. Create a modified normalization function that preserves unmapped symbols\n",
"def modified_normalize_gene_symbols(gene_df):\n",
" with open(\"./metadata/gene_synonym.json\", \"r\") as f:\n",
" synonym_dict = json.load(f)\n",
" \n",
" # Create a mapping function that keeps original symbol if not in dictionary\n",
" def map_symbol(x):\n",
" return synonym_dict.get(x.upper(), x)\n",
" \n",
" gene_df.index = gene_df.index.map(map_symbol)\n",
" # Group and average rows with same index (after normalization)\n",
" return gene_df.groupby(gene_df.index).mean()\n",
"\n",
"# Apply the modified normalization\n",
"gene_data = modified_normalize_gene_symbols(gene_data)\n",
"\n",
"# Preview the mapped gene data\n",
"print(\"\\nPreview of mapped gene data:\")\n",
"print(f\"Shape: {gene_data.shape}\")\n",
"print(gene_data.head())\n",
"\n",
"# Save the gene expression data\n",
"os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
"gene_data.to_csv(out_gene_data_file)\n",
"print(f\"Gene expression data saved to {out_gene_data_file}\")\n"
]
},
{
"cell_type": "markdown",
"id": "576d8241",
"metadata": {},
"source": [
"### Step 7: Data Normalization and Linking"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a6f8b089",
"metadata": {},
"outputs": [],
"source": [
"# 1. Examine the issue with gene mapping in previous step\n",
"print(\"Analyzing gene mapping issue...\")\n",
"gene_data = get_genetic_data(matrix_file)\n",
"print(f\"Gene data from file: {gene_data.shape}\")\n",
"\n",
"# Load gene annotation data more directly\n",
"gene_annotation = get_gene_annotation(soft_file)\n",
"print(f\"Gene annotation data shape: {gene_annotation.shape}\")\n",
"\n",
"# Extract and prepare the gene mapping dataframe\n",
"mapping_df = gene_annotation[['ID', 'gene_assignment']]\n",
"\n",
"# Check a sample of the gene_assignment column\n",
"print(\"\\nSample of gene_assignment data:\")\n",
"for i, assignment in enumerate(mapping_df['gene_assignment'].head(3)):\n",
" print(f\"Assignment {i}: {assignment[:100]}...\")\n",
"\n",
"# Apply extract_human_gene_symbols function to get gene symbols\n",
"mapping_df['Gene'] = mapping_df['gene_assignment'].apply(extract_human_gene_symbols)\n",
"\n",
"# Print sample of extracted genes\n",
"print(\"\\nSample of extracted genes:\")\n",
"print(mapping_df[['ID', 'Gene']].head(5))\n",
"\n",
"# Implement a direct gene mapping approach as a fallback\n",
"print(\"\\nImplementing alternative gene mapping approach...\")\n",
"gene_to_expr = {}\n",
"\n",
"# First, create a mapping from probe IDs to gene symbols\n",
"probe_to_genes = {}\n",
"for i, row in mapping_df.iterrows():\n",
" probe_id = str(row['ID'])\n",
" genes = row['Gene']\n",
" if genes and len(genes) > 0:\n",
" probe_to_genes[probe_id] = genes\n",
"\n",
"# Apply the mapping to distribute expression values\n",
"for probe_id, expr_values in gene_data.iterrows():\n",
" probe_id_str = str(probe_id)\n",
" if probe_id_str in probe_to_genes:\n",
" genes = probe_to_genes[probe_id_str]\n",
" value_share = 1.0 / len(genes)\n",
" \n",
" for gene in genes:\n",
" if gene not in gene_to_expr:\n",
" gene_to_expr[gene] = pd.Series(0, index=expr_values.index)\n",
" gene_to_expr[gene] += expr_values * value_share\n",
"\n",
"# Convert the dictionary to a DataFrame\n",
"gene_data = pd.DataFrame(gene_to_expr).T\n",
"print(f\"Gene data after direct mapping: {gene_data.shape}\")\n",
"\n",
"# 1. Normalize gene symbols in the obtained gene expression data\n",
"# Normalize gene symbols using NCBI Gene database\n",
"normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n",
"print(f\"Gene data shape after normalization: {normalized_gene_data.shape}\")\n",
"print(f\"Sample gene symbols after normalization: {list(normalized_gene_data.index[:10])}\")\n",
"\n",
"# Save the normalized gene data\n",
"os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
"normalized_gene_data.to_csv(out_gene_data_file)\n",
"print(f\"Normalized gene data saved to {out_gene_data_file}\")\n",
"\n",
"# 2. Link clinical and genetic data\n",
"# Get raw clinical data from the matrix file\n",
"_, clinical_raw = get_background_and_clinical_data(matrix_file)\n",
"\n",
"# Extract clinical features using the defined conversion functions\n",
"clinical_features = geo_select_clinical_features(\n",
" clinical_df=clinical_raw,\n",
" trait=trait,\n",
" trait_row=trait_row,\n",
" convert_trait=convert_trait,\n",
" age_row=age_row,\n",
" convert_age=convert_age,\n",
" gender_row=gender_row,\n",
" convert_gender=convert_gender\n",
")\n",
"\n",
"print(\"Clinical features shape:\", clinical_features.shape)\n",
"\n",
"# Save clinical features to file\n",
"os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
"clinical_features.to_csv(out_clinical_data_file)\n",
"print(f\"Clinical features saved to {out_clinical_data_file}\")\n",
"\n",
"# Link clinical and genetic data\n",
"linked_data = geo_link_clinical_genetic_data(clinical_features, normalized_gene_data)\n",
"print(f\"Linked data shape: {linked_data.shape}\")\n",
"print(\"Linked data preview (first 5 rows, first 5 columns):\")\n",
"if linked_data.shape[1] >= 5:\n",
" print(linked_data.iloc[:5, :5])\n",
"else:\n",
" print(linked_data.head())\n",
"\n",
"# 3. Handle missing values\n",
"print(\"\\nMissing values before handling:\")\n",
"print(f\" Trait ({trait}) missing: {linked_data[trait].isna().sum()} out of {len(linked_data)}\")\n",
"if 'Age' in linked_data.columns:\n",
" print(f\" Age missing: {linked_data['Age'].isna().sum()} out of {len(linked_data)}\")\n",
"if 'Gender' in linked_data.columns:\n",
" print(f\" Gender missing: {linked_data['Gender'].isna().sum()} out of {len(linked_data)}\")\n",
"\n",
"gene_cols = [col for col in linked_data.columns if col not in [trait, 'Age', 'Gender']]\n",
"if gene_cols:\n",
" print(f\" Genes with >20% missing: {sum(linked_data[gene_cols].isna().mean() > 0.2)}\")\n",
" print(f\" Samples with >5% missing genes: {sum(linked_data[gene_cols].isna().mean(axis=1) > 0.05)}\")\n",
"\n",
"cleaned_data = handle_missing_values(linked_data, trait)\n",
"print(f\"Data shape after handling missing values: {cleaned_data.shape}\")\n",
"\n",
"# 4. Evaluate bias in trait and demographic features\n",
"is_trait_biased = False\n",
"if len(cleaned_data) > 0:\n",
" trait_biased, cleaned_data = judge_and_remove_biased_features(cleaned_data, trait)\n",
" is_trait_biased = trait_biased\n",
"else:\n",
" print(\"No data remains after handling missing values.\")\n",
" is_trait_biased = True\n",
"\n",
"# 5. Final validation and save\n",
"is_usable = validate_and_save_cohort_info(\n",
" is_final=True, \n",
" cohort=cohort, \n",
" info_path=json_path, \n",
" is_gene_available=len(normalized_gene_data) > 0, \n",
" is_trait_available=True, \n",
" is_biased=is_trait_biased, \n",
" df=cleaned_data,\n",
" note=f\"Dataset contains gene expression data for {trait} analysis.\"\n",
")\n",
"\n",
"# 6. Save if usable\n",
"if is_usable and len(cleaned_data) > 0:\n",
" os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
" cleaned_data.to_csv(out_data_file)\n",
" print(f\"Linked data saved to {out_data_file}\")\n",
"else:\n",
" print(\"Data was determined to be unusable or empty and was not saved\")"
]
}
],
"metadata": {},
"nbformat": 4,
"nbformat_minor": 5
}
|