File size: 6,433 Bytes
a3c6344 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Allergies"
cohort = "GSE169149"
# Input paths
in_trait_dir = "../DATA/GEO/Allergies"
in_cohort_dir = "../DATA/GEO/Allergies/GSE169149"
# Output paths
out_data_file = "./output/preprocess/1/Allergies/GSE169149.csv"
out_gene_data_file = "./output/preprocess/1/Allergies/gene_data/GSE169149.csv"
out_clinical_data_file = "./output/preprocess/1/Allergies/clinical_data/GSE169149.csv"
json_path = "./output/preprocess/1/Allergies/cohort_info.json"
# STEP 1
from tools.preprocess import *
# 1. Identify the paths to the SOFT file and the matrix file
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# 2. Read the matrix file to obtain background information and sample characteristics data
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
background_info, clinical_data = get_background_and_clinical_data(
matrix_file,
background_prefixes,
clinical_prefixes
)
# 3. Obtain the sample characteristics dictionary from the clinical dataframe
sample_characteristics_dict = get_unique_values_by_row(clinical_data)
# 4. Explicitly print out all the background information and the sample characteristics dictionary
print("Background Information:")
print(background_info)
print("\nSample Characteristics Dictionary:")
print(sample_characteristics_dict)
# Step 1: Determine gene expression availability
is_gene_available = True # Based on the background, we assume this dataset likely contains gene expression data.
# Step 2: Identify data availability for 'trait', 'age', and 'gender'
# According to the sample characteristics dictionary, there is no mention of "Allergies," "age," or "gender."
trait_row = None
age_row = None
gender_row = None
# Step 2.2: Define data type conversion functions
def convert_trait(value: str) -> Optional[int]:
# No actual data for 'Allergies' in this dataset
return None
def convert_age(value: str) -> Optional[float]:
# No age information in this dataset
return None
def convert_gender(value: str) -> Optional[int]:
# No gender information in this dataset
return None
# Step 3: Conduct initial filtering and save metadata
is_trait_available = (trait_row is not None)
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available
)
# Step 4: If trait data is available, extract clinical features; otherwise, skip.
if trait_row is not None:
selected_clinical_df = geo_select_clinical_features(
clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
preview = preview_df(selected_clinical_df)
selected_clinical_df.to_csv(out_clinical_data_file, index=False)
# STEP3
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
gene_data = get_genetic_data(matrix_file)
# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
print(gene_data.index[:20])
# Based on the numeric nature of these identifiers, they do not appear to be conventional human gene symbols.
# Therefore, they require mapping to known gene symbols.
print("requires_gene_mapping = True")
# STEP5
# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
gene_annotation = get_gene_annotation(soft_file)
# 2. Use the 'preview_df' function from the library to preview the data and print out the results.
print("Gene annotation preview:")
print(preview_df(gene_annotation))
# STEP: Gene Identifier Mapping
# 1. Decide which columns map the same kind of IDs as the gene expression data and which store the gene symbols
# From the annotation preview, the "ID" column matches the expression data identifiers (1, 2, 3, ...).
# The "Assay" column appears to contain the gene symbols.
# 2. Extract a gene mapping dataframe
mapping_df = get_gene_mapping(gene_annotation, prob_col="ID", gene_col="Assay")
# 3. Convert probe-level measurements to gene expression data
gene_data = apply_gene_mapping(gene_data, mapping_df)
# Display the first few rows of the resulting gene expression dataframe for verification
print(gene_data.head())
import pandas as pd
# STEP 7: Data Normalization and (Conditional) Linking
# 1. Normalize gene symbols in the obtained gene expression data
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
normalized_gene_data.to_csv(out_gene_data_file, index=True)
print(f"Saved normalized gene data to {out_gene_data_file}")
# Since trait_row was None in step 2, we have no clinical features extracted.
# Hence 'clinical_data_selected' does not exist, and there is no trait column to link or to analyze.
# We will proceed with final validation using the fact that trait data is unavailable.
is_trait_available = False
is_gene_available = True # As concluded in step 2, it is a gene expression dataset
if not is_trait_available:
# Without trait data, we cannot link or do the usual missing-value handling by trait.
# We still provide the normalized_gene_data to the validator (though it won't be used for trait analysis).
final_data = normalized_gene_data
is_biased = False # We must supply a boolean; no trait data => cannot assess bias
# 5. Final quality validation
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available,
is_biased=is_biased,
df=final_data,
note="No trait data available in this dataset."
)
# 6. If the dataset is usable, save final data; however, in this scenario it likely won't be.
if is_usable:
final_data.to_csv(out_data_file)
print(f"Saved final linked data to {out_data_file}")
else:
print("Data not usable; skipping final output.")
else:
# If trait data were available, we would link, handle missing values, check bias, and finalize.
# This branch is skipped because 'is_trait_available' is False.
pass |