File size: 7,139 Bytes
a3c6344 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Allergies"
cohort = "GSE182740"
# Input paths
in_trait_dir = "../DATA/GEO/Allergies"
in_cohort_dir = "../DATA/GEO/Allergies/GSE182740"
# Output paths
out_data_file = "./output/preprocess/1/Allergies/GSE182740.csv"
out_gene_data_file = "./output/preprocess/1/Allergies/gene_data/GSE182740.csv"
out_clinical_data_file = "./output/preprocess/1/Allergies/clinical_data/GSE182740.csv"
json_path = "./output/preprocess/1/Allergies/cohort_info.json"
# STEP 1
from tools.preprocess import *
# 1. Identify the paths to the SOFT file and the matrix file
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# 2. Read the matrix file to obtain background information and sample characteristics data
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
background_info, clinical_data = get_background_and_clinical_data(
matrix_file,
background_prefixes,
clinical_prefixes
)
# 3. Obtain the sample characteristics dictionary from the clinical dataframe
sample_characteristics_dict = get_unique_values_by_row(clinical_data)
# 4. Explicitly print out all the background information and the sample characteristics dictionary
print("Background Information:")
print(background_info)
print("\nSample Characteristics Dictionary:")
print(sample_characteristics_dict)
# 1. Gene Expression Data Availability
# Based on the background information ("Global mRNA expression" is mentioned),
# we conclude that gene expression data is available:
is_gene_available = True
# 2. Variable Availability and Data Type Conversion
# After reviewing the sample characteristics dictionary, we see that
# key=1 contains "disease: Psoriasis", "disease: Atopic_dermatitis", "disease: Mixed", "disease: Normal_skin".
# We can use this to infer a binary trait for "Allergies" if "Atopic_dermatitis" or "Mixed" is present, else 0.
trait_row = 1 # because it provides disease info that we can map to 'Allergies'
# No mention of age or gender in the dictionary, so these are not available:
age_row = None
gender_row = None
# Define the conversion functions.
def convert_trait(value: str):
"""
Convert a string like "disease: Psoriasis" to a binary indicator for the trait "Allergies".
We parse the substring after "disease:" and map:
- "Atopic_dermatitis" or "Mixed" -> 1 (indicative of 'Allergies')
- Otherwise -> 0
Unknown or unexpected -> None
"""
if not isinstance(value, str):
return None
# Typically "disease: something", split by colon
parts = value.split(":", 1)
if len(parts) < 2:
return None
disease_str = parts[1].strip().lower() # e.g. "psoriasis", "atopic_dermatitis", "mixed", "normal_skin"
if "atopic_dermatitis" in disease_str or "mixed" in disease_str:
return 1
elif "psoriasis" in disease_str or "normal_skin" in disease_str:
return 0
else:
return None
def convert_age(value: str):
"""
Data not available; placeholder function returning None.
"""
return None
def convert_gender(value: str):
"""
Data not available; placeholder function returning None.
"""
return None
# 3. Save Metadata (initial filtering)
# Trait data is available if trait_row != None
is_trait_available = (trait_row is not None)
# Perform the initial validation and save metadata.
# The function returns True if the dataset passes final validation,
# but here we only do the initial filtering (is_final=False).
is_usable = validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available
)
# 4. Clinical Feature Extraction
# Proceed only if trait_row is not None
if trait_row is not None:
# Assuming "clinical_data" is the previously obtained clinical DataFrame
clinical_data_selected = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview the selected clinical data
preview_result = preview_df(clinical_data_selected)
print("Clinical data preview:", preview_result)
# Save the extracted clinical features
clinical_data_selected.to_csv(out_clinical_data_file, index=False)
# STEP3
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
gene_data = get_genetic_data(matrix_file)
# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
print(gene_data.index[:20])
# The given identifiers (e.g., '1007_s_at', '1053_at') appear to be Affymetrix probe IDs, not official gene symbols.
# Hence, we need to map them to recognized gene symbols.
print("requires_gene_mapping = True")
# STEP5
# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
gene_annotation = get_gene_annotation(soft_file)
# 2. Use the 'preview_df' function from the library to preview the data and print out the results.
print("Gene annotation preview:")
print(preview_df(gene_annotation))
# STEP: Gene Identifier Mapping
# 1. Decide which keys in the gene annotation store the probe IDs and gene symbols
# From our observation, 'ID' matches the probe IDs (e.g., '1007_s_at'),
# and 'Gene Symbol' stores the gene symbols.
# 2. Get a gene mapping dataframe
mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Gene Symbol')
# 3. Convert probe-level measurements to gene-level measurements
gene_data = apply_gene_mapping(gene_data, mapping_df)
# (At this stage, 'gene_data' now holds gene-level expression data.)
import pandas as pd
# STEP 7: Data Normalization and Linking
# 1. Normalize gene symbols in the obtained gene expression data
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
normalized_gene_data.to_csv(out_gene_data_file, index=True)
print(f"Saved normalized gene data to {out_gene_data_file}")
# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(clinical_data_selected, normalized_gene_data)
# 3. Handle missing values
cleaned_data = handle_missing_values(linked_data, trait)
# 4. Determine bias in trait and demographic features
trait_biased, final_data = judge_and_remove_biased_features(cleaned_data, trait)
# 5. Final validation and save metadata
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=trait_biased,
df=final_data,
note="Processed with standard GEO pipeline."
)
# 6. If data is usable, save the final linked data
if is_usable:
final_data.to_csv(out_data_file)
print(f"Saved final linked data to {out_data_file}")
else:
print("Data not usable; skipping final output.") |