File size: 7,139 Bytes
a3c6344
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Allergies"
cohort = "GSE182740"

# Input paths
in_trait_dir = "../DATA/GEO/Allergies"
in_cohort_dir = "../DATA/GEO/Allergies/GSE182740"

# Output paths
out_data_file = "./output/preprocess/1/Allergies/GSE182740.csv"
out_gene_data_file = "./output/preprocess/1/Allergies/gene_data/GSE182740.csv"
out_clinical_data_file = "./output/preprocess/1/Allergies/clinical_data/GSE182740.csv"
json_path = "./output/preprocess/1/Allergies/cohort_info.json"

# STEP 1

from tools.preprocess import *

# 1. Identify the paths to the SOFT file and the matrix file
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# 2. Read the matrix file to obtain background information and sample characteristics data
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
background_info, clinical_data = get_background_and_clinical_data(
    matrix_file, 
    background_prefixes, 
    clinical_prefixes
)

# 3. Obtain the sample characteristics dictionary from the clinical dataframe
sample_characteristics_dict = get_unique_values_by_row(clinical_data)

# 4. Explicitly print out all the background information and the sample characteristics dictionary
print("Background Information:")
print(background_info)
print("\nSample Characteristics Dictionary:")
print(sample_characteristics_dict)
# 1. Gene Expression Data Availability
# Based on the background information ("Global mRNA expression" is mentioned),
# we conclude that gene expression data is available:
is_gene_available = True

# 2. Variable Availability and Data Type Conversion

# After reviewing the sample characteristics dictionary, we see that
# key=1 contains "disease: Psoriasis", "disease: Atopic_dermatitis", "disease: Mixed", "disease: Normal_skin".
# We can use this to infer a binary trait for "Allergies" if "Atopic_dermatitis" or "Mixed" is present, else 0.
trait_row = 1  # because it provides disease info that we can map to 'Allergies'

# No mention of age or gender in the dictionary, so these are not available:
age_row = None
gender_row = None

# Define the conversion functions.
def convert_trait(value: str):
    """
    Convert a string like "disease: Psoriasis" to a binary indicator for the trait "Allergies".
    We parse the substring after "disease:" and map:
    - "Atopic_dermatitis" or "Mixed" -> 1 (indicative of 'Allergies')
    - Otherwise -> 0
    Unknown or unexpected -> None
    """
    if not isinstance(value, str):
        return None

    # Typically "disease: something", split by colon
    parts = value.split(":", 1)
    if len(parts) < 2:
        return None
    disease_str = parts[1].strip().lower()  # e.g. "psoriasis", "atopic_dermatitis", "mixed", "normal_skin"

    if "atopic_dermatitis" in disease_str or "mixed" in disease_str:
        return 1
    elif "psoriasis" in disease_str or "normal_skin" in disease_str:
        return 0
    else:
        return None

def convert_age(value: str):
    """
    Data not available; placeholder function returning None.
    """
    return None

def convert_gender(value: str):
    """
    Data not available; placeholder function returning None.
    """
    return None

# 3. Save Metadata (initial filtering)
# Trait data is available if trait_row != None
is_trait_available = (trait_row is not None)

# Perform the initial validation and save metadata.
# The function returns True if the dataset passes final validation,
# but here we only do the initial filtering (is_final=False).
is_usable = validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=is_trait_available
)

# 4. Clinical Feature Extraction
# Proceed only if trait_row is not None
if trait_row is not None:
    # Assuming "clinical_data" is the previously obtained clinical DataFrame
    clinical_data_selected = geo_select_clinical_features(
        clinical_df=clinical_data,
        trait=trait,
        trait_row=trait_row,
        convert_trait=convert_trait,
        age_row=age_row,
        convert_age=convert_age,
        gender_row=gender_row,
        convert_gender=convert_gender
    )

    # Preview the selected clinical data
    preview_result = preview_df(clinical_data_selected)
    print("Clinical data preview:", preview_result)

    # Save the extracted clinical features
    clinical_data_selected.to_csv(out_clinical_data_file, index=False)
# STEP3
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
gene_data = get_genetic_data(matrix_file)

# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
print(gene_data.index[:20])
# The given identifiers (e.g., '1007_s_at', '1053_at') appear to be Affymetrix probe IDs, not official gene symbols.
# Hence, we need to map them to recognized gene symbols.
print("requires_gene_mapping = True")
# STEP5
# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
gene_annotation = get_gene_annotation(soft_file)

# 2. Use the 'preview_df' function from the library to preview the data and print out the results.
print("Gene annotation preview:")
print(preview_df(gene_annotation))
# STEP: Gene Identifier Mapping

# 1. Decide which keys in the gene annotation store the probe IDs and gene symbols
#    From our observation, 'ID' matches the probe IDs (e.g., '1007_s_at'), 
#    and 'Gene Symbol' stores the gene symbols.

# 2. Get a gene mapping dataframe
mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Gene Symbol')

# 3. Convert probe-level measurements to gene-level measurements 
gene_data = apply_gene_mapping(gene_data, mapping_df)

# (At this stage, 'gene_data' now holds gene-level expression data.)
import pandas as pd

# STEP 7: Data Normalization and Linking

# 1. Normalize gene symbols in the obtained gene expression data
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
normalized_gene_data.to_csv(out_gene_data_file, index=True)
print(f"Saved normalized gene data to {out_gene_data_file}")

# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(clinical_data_selected, normalized_gene_data)

# 3. Handle missing values
cleaned_data = handle_missing_values(linked_data, trait)

# 4. Determine bias in trait and demographic features
trait_biased, final_data = judge_and_remove_biased_features(cleaned_data, trait)

# 5. Final validation and save metadata
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=True, 
    is_trait_available=True, 
    is_biased=trait_biased,
    df=final_data,
    note="Processed with standard GEO pipeline."
)

# 6. If data is usable, save the final linked data
if is_usable:
    final_data.to_csv(out_data_file)
    print(f"Saved final linked data to {out_data_file}")
else:
    print("Data not usable; skipping final output.")