File size: 5,669 Bytes
a3c6344 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Allergies"
cohort = "GSE184382"
# Input paths
in_trait_dir = "../DATA/GEO/Allergies"
in_cohort_dir = "../DATA/GEO/Allergies/GSE184382"
# Output paths
out_data_file = "./output/preprocess/1/Allergies/GSE184382.csv"
out_gene_data_file = "./output/preprocess/1/Allergies/gene_data/GSE184382.csv"
out_clinical_data_file = "./output/preprocess/1/Allergies/clinical_data/GSE184382.csv"
json_path = "./output/preprocess/1/Allergies/cohort_info.json"
# STEP 1
from tools.preprocess import *
# 1. Identify the paths to the SOFT file and the matrix file
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# 2. Read the matrix file to obtain background information and sample characteristics data
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
background_info, clinical_data = get_background_and_clinical_data(
matrix_file,
background_prefixes,
clinical_prefixes
)
# 3. Obtain the sample characteristics dictionary from the clinical dataframe
sample_characteristics_dict = get_unique_values_by_row(clinical_data)
# 4. Explicitly print out all the background information and the sample characteristics dictionary
print("Background Information:")
print(background_info)
print("\nSample Characteristics Dictionary:")
print(sample_characteristics_dict)
# 1. Gene Expression Data Availability
# Based on the background info mentioning both miR microarray and transcriptome microarray,
# we conclude that gene expression data is available.
is_gene_available = True
# 2. Variable Availability and Data Type Conversion
# From the sample characteristics dictionary, we do not have any rows indicating the 'Allergies' trait,
# age, or gender. Hence, none of these variables are available.
trait_row = None
age_row = None
gender_row = None
# Define conversion functions. Although the variables are not available, we still provide the requested functions.
def convert_trait(value: str):
# No actual data to convert; return None
return None
def convert_age(value: str):
# No actual data to convert; return None
return None
def convert_gender(value: str):
# No actual data to convert; return None
return None
# 3. Save Metadata (Initial Filtering)
# Trait data availability is determined by whether trait_row is None.
is_trait_available = (trait_row is not None)
# We perform the initial validation (is_final=False).
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available
)
# 4. Clinical Feature Extraction
# Since trait_row is None, we skip clinical feature extraction as instructed.
# STEP3
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
gene_data = get_genetic_data(matrix_file)
# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
print(gene_data.index[:20])
# Based on the identifiers like "A_19_P00315452", these appear to be microarray probe IDs (not standard human gene symbols).
# Therefore, they need to be mapped to human gene symbols.
print("requires_gene_mapping = True")
# STEP5
# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
gene_annotation = get_gene_annotation(soft_file)
# 2. Use the 'preview_df' function from the library to preview the data and print out the results.
print("Gene annotation preview:")
print(preview_df(gene_annotation))
# STEP: Gene Identifier Mapping
# 1. Decide which annotation columns match our expression data IDs and gene symbols:
# - The "ID" column in the annotation file corresponds to probe identifiers (e.g., "A_21_P0014386", "A_19_P00315452").
# - The "GENE_SYMBOL" column stores the gene symbol.
# 2. Get the gene mapping dataframe using the relevant columns from the annotation.
gene_mapping = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='GENE_SYMBOL')
# 3. Convert probe-level measurements to gene expression data by applying the gene mapping.
gene_data = apply_gene_mapping(gene_data, gene_mapping)
import pandas as pd
# STEP 5: Data Normalization and Linking
# 1. Normalize gene symbols in the obtained gene expression data
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
normalized_gene_data.to_csv(out_gene_data_file, index=True)
print(f"Saved normalized gene data to {out_gene_data_file}")
# Since in earlier steps trait_row was None, we have no clinical data to link.
# Hence, there's no trait column to process. We'll skip linking and further steps
# that require the trait. However, we must still perform a final validation.
# Prepare a dummy DataFrame for the final validation
dummy_df = pd.DataFrame()
# We must provide is_biased and df to the final validation.
# Because trait data is not available, this dataset won't be usable.
is_biased = False # Arbitrarily set; since trait is unavailable, "is_usable" will be False anyway.
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True, # Gene data is available
is_trait_available=False, # Trait data is not available
is_biased=is_biased,
df=dummy_df,
note="No trait data available; skipping linking."
)
# 6. If data were usable, we would save it; otherwise we do nothing
if is_usable:
print("Data is unexpectedly marked usable, but trait is unavailable. Skipping save.") |