File size: 6,165 Bytes
a3c6344
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Allergies"
cohort = "GSE185658"

# Input paths
in_trait_dir = "../DATA/GEO/Allergies"
in_cohort_dir = "../DATA/GEO/Allergies/GSE185658"

# Output paths
out_data_file = "./output/preprocess/1/Allergies/GSE185658.csv"
out_gene_data_file = "./output/preprocess/1/Allergies/gene_data/GSE185658.csv"
out_clinical_data_file = "./output/preprocess/1/Allergies/clinical_data/GSE185658.csv"
json_path = "./output/preprocess/1/Allergies/cohort_info.json"

# STEP 1

from tools.preprocess import *

# 1. Identify the paths to the SOFT file and the matrix file
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# 2. Read the matrix file to obtain background information and sample characteristics data
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
background_info, clinical_data = get_background_and_clinical_data(
    matrix_file, 
    background_prefixes, 
    clinical_prefixes
)

# 3. Obtain the sample characteristics dictionary from the clinical dataframe
sample_characteristics_dict = get_unique_values_by_row(clinical_data)

# 4. Explicitly print out all the background information and the sample characteristics dictionary
print("Background Information:")
print(background_info)
print("\nSample Characteristics Dictionary:")
print(sample_characteristics_dict)
# 1) Check if gene expression data is available:
is_gene_available = True  # Based on microarray mention in the background info

# 2) Identify trait_row, age_row, gender_row, and define the conversion functions:
trait_row = 1  # "group" key likely indicates allergic status (AsthmaHDM vs. others)
age_row = None  # No age info found
gender_row = None  # No gender info found

def convert_trait(value: str):
    # Extract the substring after the colon
    parts = value.split(':', 1)
    if len(parts) < 2:
        return None
    val = parts[1].strip()
    # Interpret "AsthmaHDM" as having allergies (1) and others as no allergies (0)
    if val == 'AsthmaHDM':
        return 1
    elif val in ['AsthmaHDMNeg', 'Healthy']:
        return 0
    return None

# Not used due to unavailability:
convert_age = None
convert_gender = None

# 3) Initial filtering and metadata saving:
is_trait_available = (trait_row is not None)
is_usable = validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=is_trait_available
)

# 4) Clinical feature extraction if trait data is available:
if trait_row is not None:
    selected_clinical_df = geo_select_clinical_features(
        clinical_data,
        trait,
        trait_row,
        convert_trait,
        age_row,
        convert_age,
        gender_row,
        convert_gender
    )
    print(preview_df(selected_clinical_df, n=5))
    selected_clinical_df.to_csv(out_clinical_data_file, index=False)
# STEP3
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
gene_data = get_genetic_data(matrix_file)

# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
print(gene_data.index[:20])
# Based on the numeric indices (e.g., '7892501', '7892502') rather than standard gene symbols like 'CD69' or 'TNF',
# these identifiers appear to be probe IDs or some other non-human-gene-symbol identifiers that would require mapping.

requires_gene_mapping = True
# STEP5
# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
gene_annotation = get_gene_annotation(soft_file)

# 2. Use the 'preview_df' function from the library to preview the data and print out the results.
print("Gene annotation preview:")
print(preview_df(gene_annotation))
# STEP 6: Gene Identifier Mapping

# 1. The column "ID" in gene_annotation matches the probe IDs in the expression data,
#    and "gene_assignment" contains the relevant references for gene symbols.

mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='gene_assignment')

# 2. Convert probe-level measurements to gene-level data.
gene_data = apply_gene_mapping(gene_data, mapping_df)

# Quick check of the resulting gene_data
print("Gene-level expression data shape:", gene_data.shape)
print("First 20 gene symbols:", gene_data.index[:20].tolist())
import pandas as pd

# STEP 7: Data Normalization and Linking

# 1. Normalize gene symbols in the obtained gene expression data
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
normalized_gene_data.to_csv(out_gene_data_file, index=True)
print(f"Saved normalized gene data to {out_gene_data_file}")

# 2. Read the previously saved clinical data (which contains the trait) correctly:
#    Since we saved a single row (the trait) with multiple columns (sample IDs),
#    we read it as a normal CSV (no index_col) and then set the row index to the trait name.
clinical_df = pd.read_csv(out_clinical_data_file)
# Assign the single row index to the trait; columns are sample IDs.
clinical_df.index = [trait]

# 3. Link the clinical and genetic data
linked_data = geo_link_clinical_genetic_data(clinical_df, normalized_gene_data)

# 4. Handle missing values in the linked data
linked_data = handle_missing_values(linked_data, trait_col=trait)

# 5. Check and remove biased features, and see if our trait is biased
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

# 6. Final validation and saving metadata
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=True,
    is_trait_available=True,
    is_biased=is_biased,
    df=linked_data,
    note="Processed with correct trait indexing, missing-value handling, and bias checks."
)

# 7. If the dataset is usable, save the final linked data
if is_usable:
    linked_data.to_csv(out_data_file, index=True)
    print(f"Final linked data saved to {out_data_file}")
else:
    print("Dataset is not usable; final linked data not saved.")