File size: 5,910 Bytes
a3c6344
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Allergies"
cohort = "GSE192454"

# Input paths
in_trait_dir = "../DATA/GEO/Allergies"
in_cohort_dir = "../DATA/GEO/Allergies/GSE192454"

# Output paths
out_data_file = "./output/preprocess/1/Allergies/GSE192454.csv"
out_gene_data_file = "./output/preprocess/1/Allergies/gene_data/GSE192454.csv"
out_clinical_data_file = "./output/preprocess/1/Allergies/clinical_data/GSE192454.csv"
json_path = "./output/preprocess/1/Allergies/cohort_info.json"

# STEP 1

from tools.preprocess import *

# 1. Identify the paths to the SOFT file and the matrix file
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# 2. Read the matrix file to obtain background information and sample characteristics data
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
background_info, clinical_data = get_background_and_clinical_data(
    matrix_file, 
    background_prefixes, 
    clinical_prefixes
)

# 3. Obtain the sample characteristics dictionary from the clinical dataframe
sample_characteristics_dict = get_unique_values_by_row(clinical_data)

# 4. Explicitly print out all the background information and the sample characteristics dictionary
print("Background Information:")
print(background_info)
print("\nSample Characteristics Dictionary:")
print(sample_characteristics_dict)
# 1. Gene Expression Data Availability
# Based on "whole transcriptome profiling by microarray", we consider gene expression data present.
is_gene_available = True

# 2. Variable Availability and Data Type Conversion

# From the sample characteristics dictionary, there is no row that indicates 'Allergies'
# or any direct or inferred measure of atopic condition variability, so trait data is not available.
trait_row = None

# No 'age' or 'gender' information is provided. Hence, both are unavailable.
age_row = None
gender_row = None

# Define data conversion functions as requested (they will not be used here since rows are None).
def convert_trait(value: str):
    # Typically extract the part after the colon
    parts = value.split(':', 1)
    val = parts[1].strip() if len(parts) > 1 else ''
    # For "Allergies" we would normally map, but data is not available here
    # Unknown or missing values go to None
    return None

def convert_age(value: str):
    # Typically extract numeric age or None
    parts = value.split(':', 1)
    val = parts[1].strip() if len(parts) > 1 else ''
    # Not available, so default to None
    return None

def convert_gender(value: str):
    # Typically map female->0, male->1
    parts = value.split(':', 1)
    val = parts[1].strip() if len(parts) > 1 else ''
    # Not available, so default to None
    return None

# 3. Save Metadata with initial filtering
is_trait_available = (trait_row is not None)
validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=is_trait_available
)

# 4. Clinical Feature Extraction
# Since trait_row is None, no clinical feature extraction is performed.
# STEP3
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
gene_data = get_genetic_data(matrix_file)

# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
print(gene_data.index[:20])
# Based on the provided identifiers, they appear to be numeric IDs rather than human gene symbols.
# Therefore, they likely need to be mapped to proper gene symbols.

print("requires_gene_mapping = True")
# STEP5
# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
gene_annotation = get_gene_annotation(soft_file)

# 2. Use the 'preview_df' function from the library to preview the data and print out the results.
print("Gene annotation preview:")
print(preview_df(gene_annotation))
# STEP: Gene Identifier Mapping

# 1. Identify the columns in the gene annotation that match the gene expression data ID and the gene symbol.
#    Here, the 'ID' column in gene_annotation matches the numeric IDs in gene_data, 
#    and the 'GENE_SYMBOL' column stores the gene symbols.

# 2. Get the gene mapping dataframe:
mapping_df = get_gene_mapping(gene_annotation, "ID", "GENE_SYMBOL")

# 3. Convert probe-level measurements to gene-level expression data:
gene_data = apply_gene_mapping(gene_data, mapping_df)
import pandas as pd

# STEP 5: Data Normalization and Linking

# 1. Normalize gene symbols in the obtained gene expression data
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
normalized_gene_data.to_csv(out_gene_data_file, index=True)
print(f"Saved normalized gene data to {out_gene_data_file}")

# Since in earlier steps trait_row was None, we have no clinical data to link.
# Hence, there's no trait column to process. We'll skip linking and further steps
# that require the trait. However, we must still perform a final validation.

# Prepare a dummy DataFrame for the final validation
dummy_df = pd.DataFrame()

# We must provide is_biased and df to the final validation.
# Because trait data is not available, this dataset won't be usable.
is_biased = False  # Arbitrarily set; since trait is unavailable, "is_usable" will be False anyway.

is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=True,      # Gene data is available
    is_trait_available=False,    # Trait data is not available
    is_biased=is_biased,
    df=dummy_df,
    note="No trait data available; skipping linking."
)

# 6. If data were usable, we would save it; otherwise we do nothing
if is_usable:
    print("Data is unexpectedly marked usable, but trait is unavailable. Skipping save.")