File size: 7,127 Bytes
a3c6344 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Allergies"
cohort = "GSE203196"
# Input paths
in_trait_dir = "../DATA/GEO/Allergies"
in_cohort_dir = "../DATA/GEO/Allergies/GSE203196"
# Output paths
out_data_file = "./output/preprocess/1/Allergies/GSE203196.csv"
out_gene_data_file = "./output/preprocess/1/Allergies/gene_data/GSE203196.csv"
out_clinical_data_file = "./output/preprocess/1/Allergies/clinical_data/GSE203196.csv"
json_path = "./output/preprocess/1/Allergies/cohort_info.json"
# STEP 1
from tools.preprocess import *
# 1. Identify the paths to the SOFT file and the matrix file
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# 2. Read the matrix file to obtain background information and sample characteristics data
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
background_info, clinical_data = get_background_and_clinical_data(
matrix_file,
background_prefixes,
clinical_prefixes
)
# 3. Obtain the sample characteristics dictionary from the clinical dataframe
sample_characteristics_dict = get_unique_values_by_row(clinical_data)
# 4. Explicitly print out all the background information and the sample characteristics dictionary
print("Background Information:")
print(background_info)
print("\nSample Characteristics Dictionary:")
print(sample_characteristics_dict)
# 1. Determine if gene expression data is available
is_gene_available = True # Based on the summary: "RNA ... used for transcriptomic studies"
# 2. Determine data availability for trait, age, and gender (row keys) and define type conversions
# From the sample characteristics dictionary:
# {0: ['cell type: ...'],
# 1: ['gender: F','gender: M'],
# 2: ['individual: patient16', ...],
# 3: ['age: 28','age: 40',...],
# 4: ['allergy: mild','allergy: severe','allergy: control']}
trait_row = 4 # variable "allergy: mild/severe/control"
age_row = 3 # variable "age: NN"
gender_row = 1 # variable "gender: F/M"
def convert_trait(value: str) -> Optional[int]:
"""
Convert allergy values to binary:
'control' -> 0, 'mild'/'severe' -> 1, otherwise None
"""
# Expected format is 'allergy: something'
parts = value.split(':')
if len(parts) < 2:
return None
val = parts[1].strip().lower()
if val == 'control':
return 0
elif val in ['mild', 'severe']:
return 1
return None
def convert_age(value: str) -> Optional[float]:
"""
Convert age values to float; unknown or malformed -> None
"""
# Expected format is 'age: NN'
parts = value.split(':')
if len(parts) < 2:
return None
try:
return float(parts[1].strip())
except ValueError:
return None
def convert_gender(value: str) -> Optional[int]:
"""
Convert gender values to binary:
'F' -> 0, 'M' -> 1, otherwise None
"""
# Expected format is 'gender: F' or 'gender: M'
parts = value.split(':')
if len(parts) < 2:
return None
val = parts[1].strip().upper()
if val == 'F':
return 0
elif val == 'M':
return 1
return None
# Determine if trait data is available
is_trait_available = (trait_row is not None)
# 3. Initial filtering and saving metadata
is_usable = validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available
)
# 4. Clinical feature extraction (only if trait_row is not None)
if trait_row is not None:
# Suppose 'clinical_data' DataFrame was obtained in a previous step
# We'll assume it's already loaded in the environment
df_clinical = geo_select_clinical_features(
clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Observe a preview of the extracted features
clinical_preview = preview_df(df_clinical)
print("Preview of clinical features:", clinical_preview)
# Save the clinical dataframe to CSV
df_clinical.to_csv(out_clinical_data_file, index=False)
# STEP3
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
gene_data = get_genetic_data(matrix_file)
# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
print(gene_data.index[:20])
# Based on the numeric nature of these IDs, they are not standard human gene symbols and require mapping.
print("requires_gene_mapping = True")
# STEP5
# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
gene_annotation = get_gene_annotation(soft_file)
# 2. Use the 'preview_df' function from the library to preview the data and print out the results.
print("Gene annotation preview:")
print(preview_df(gene_annotation))
# STEP 6: Gene Identifier Mapping
# 1. Identify which annotation columns match the expression data and gene symbols
# - The gene expression data index is stored in "ID"
# - The likely column with gene symbols is "gene_assignment"
# 2. Get the gene mapping dataframe
mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='gene_assignment')
# 3. Convert probe-level data to gene expression data
gene_data = apply_gene_mapping(gene_data, mapping_df)
# (Optional) Print a quick shape check to confirm mapping
print("Mapped gene expression data shape:", gene_data.shape)
# STEP 7: Data Normalization and Linking
import pandas as pd
# 1. Normalize gene symbols in the obtained gene expression data
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
normalized_gene_data.to_csv(out_gene_data_file, index=True)
print(f"Saved normalized gene data to {out_gene_data_file}")
# 2. Link the refined clinical data (with "Allergies" column) to the normalized gene data
# Recall that 'df_clinical' was created in an earlier step and contains the trait column "Allergies."
linked_data = geo_link_clinical_genetic_data(df_clinical, normalized_gene_data)
# 3. Handle missing values in the linked dataset
processed_data = handle_missing_values(linked_data, trait)
# 4. Judge if the trait (and covariates) are biased
trait_biased, processed_data = judge_and_remove_biased_features(processed_data, trait)
# 5. Conduct final quality validation and save metadata
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=trait_biased,
df=processed_data,
note="Linked clinical and gene data successfully."
)
# 6. If the dataset is usable, save the final linked DataFrame
if is_usable:
processed_data.to_csv(out_data_file, index=True)
print(f"Final linked data saved to {out_data_file}")
else:
print("Data was determined not to be usable; final dataset not saved.") |