File size: 7,127 Bytes
a3c6344
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Allergies"
cohort = "GSE203196"

# Input paths
in_trait_dir = "../DATA/GEO/Allergies"
in_cohort_dir = "../DATA/GEO/Allergies/GSE203196"

# Output paths
out_data_file = "./output/preprocess/1/Allergies/GSE203196.csv"
out_gene_data_file = "./output/preprocess/1/Allergies/gene_data/GSE203196.csv"
out_clinical_data_file = "./output/preprocess/1/Allergies/clinical_data/GSE203196.csv"
json_path = "./output/preprocess/1/Allergies/cohort_info.json"

# STEP 1

from tools.preprocess import *

# 1. Identify the paths to the SOFT file and the matrix file
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# 2. Read the matrix file to obtain background information and sample characteristics data
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
background_info, clinical_data = get_background_and_clinical_data(
    matrix_file, 
    background_prefixes, 
    clinical_prefixes
)

# 3. Obtain the sample characteristics dictionary from the clinical dataframe
sample_characteristics_dict = get_unique_values_by_row(clinical_data)

# 4. Explicitly print out all the background information and the sample characteristics dictionary
print("Background Information:")
print(background_info)
print("\nSample Characteristics Dictionary:")
print(sample_characteristics_dict)
# 1. Determine if gene expression data is available
is_gene_available = True  # Based on the summary: "RNA ... used for transcriptomic studies"

# 2. Determine data availability for trait, age, and gender (row keys) and define type conversions

# From the sample characteristics dictionary:
# {0: ['cell type: ...'], 
#  1: ['gender: F','gender: M'],
#  2: ['individual: patient16', ...],
#  3: ['age: 28','age: 40',...],
#  4: ['allergy: mild','allergy: severe','allergy: control']}
trait_row = 4    # variable "allergy: mild/severe/control"
age_row = 3      # variable "age: NN"
gender_row = 1   # variable "gender: F/M"

def convert_trait(value: str) -> Optional[int]:
    """
    Convert allergy values to binary: 
      'control' -> 0, 'mild'/'severe' -> 1, otherwise None
    """
    # Expected format is 'allergy: something'
    parts = value.split(':')
    if len(parts) < 2:
        return None
    val = parts[1].strip().lower()
    if val == 'control':
        return 0
    elif val in ['mild', 'severe']:
        return 1
    return None

def convert_age(value: str) -> Optional[float]:
    """
    Convert age values to float; unknown or malformed -> None
    """
    # Expected format is 'age: NN'
    parts = value.split(':')
    if len(parts) < 2:
        return None
    try:
        return float(parts[1].strip())
    except ValueError:
        return None

def convert_gender(value: str) -> Optional[int]:
    """
    Convert gender values to binary:
       'F' -> 0, 'M' -> 1, otherwise None
    """
    # Expected format is 'gender: F' or 'gender: M'
    parts = value.split(':')
    if len(parts) < 2:
        return None
    val = parts[1].strip().upper()
    if val == 'F':
        return 0
    elif val == 'M':
        return 1
    return None

# Determine if trait data is available
is_trait_available = (trait_row is not None)

# 3. Initial filtering and saving metadata
is_usable = validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=is_trait_available
)

# 4. Clinical feature extraction (only if trait_row is not None)
if trait_row is not None:
    # Suppose 'clinical_data' DataFrame was obtained in a previous step
    # We'll assume it's already loaded in the environment
    df_clinical = geo_select_clinical_features(
        clinical_data,
        trait=trait,
        trait_row=trait_row,
        convert_trait=convert_trait,
        age_row=age_row,
        convert_age=convert_age,
        gender_row=gender_row,
        convert_gender=convert_gender
    )
    # Observe a preview of the extracted features
    clinical_preview = preview_df(df_clinical)
    print("Preview of clinical features:", clinical_preview)

    # Save the clinical dataframe to CSV
    df_clinical.to_csv(out_clinical_data_file, index=False)
# STEP3
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
gene_data = get_genetic_data(matrix_file)

# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
print(gene_data.index[:20])
# Based on the numeric nature of these IDs, they are not standard human gene symbols and require mapping.
print("requires_gene_mapping = True")
# STEP5
# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
gene_annotation = get_gene_annotation(soft_file)

# 2. Use the 'preview_df' function from the library to preview the data and print out the results.
print("Gene annotation preview:")
print(preview_df(gene_annotation))
# STEP 6: Gene Identifier Mapping

# 1. Identify which annotation columns match the expression data and gene symbols
#    - The gene expression data index is stored in "ID"
#    - The likely column with gene symbols is "gene_assignment"

# 2. Get the gene mapping dataframe
mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='gene_assignment')

# 3. Convert probe-level data to gene expression data
gene_data = apply_gene_mapping(gene_data, mapping_df)

# (Optional) Print a quick shape check to confirm mapping
print("Mapped gene expression data shape:", gene_data.shape)
# STEP 7: Data Normalization and Linking

import pandas as pd

# 1. Normalize gene symbols in the obtained gene expression data
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
normalized_gene_data.to_csv(out_gene_data_file, index=True)
print(f"Saved normalized gene data to {out_gene_data_file}")

# 2. Link the refined clinical data (with "Allergies" column) to the normalized gene data
#    Recall that 'df_clinical' was created in an earlier step and contains the trait column "Allergies."
linked_data = geo_link_clinical_genetic_data(df_clinical, normalized_gene_data)

# 3. Handle missing values in the linked dataset
processed_data = handle_missing_values(linked_data, trait)

# 4. Judge if the trait (and covariates) are biased
trait_biased, processed_data = judge_and_remove_biased_features(processed_data, trait)

# 5. Conduct final quality validation and save metadata
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=True,
    is_trait_available=True,
    is_biased=trait_biased,
    df=processed_data,
    note="Linked clinical and gene data successfully."
)

# 6. If the dataset is usable, save the final linked DataFrame
if is_usable:
    processed_data.to_csv(out_data_file, index=True)
    print(f"Final linked data saved to {out_data_file}")
else:
    print("Data was determined not to be usable; final dataset not saved.")