File size: 6,085 Bytes
a3c6344 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Allergies"
cohort = "GSE203409"
# Input paths
in_trait_dir = "../DATA/GEO/Allergies"
in_cohort_dir = "../DATA/GEO/Allergies/GSE203409"
# Output paths
out_data_file = "./output/preprocess/1/Allergies/GSE203409.csv"
out_gene_data_file = "./output/preprocess/1/Allergies/gene_data/GSE203409.csv"
out_clinical_data_file = "./output/preprocess/1/Allergies/clinical_data/GSE203409.csv"
json_path = "./output/preprocess/1/Allergies/cohort_info.json"
# STEP 1
from tools.preprocess import *
# 1. Identify the paths to the SOFT file and the matrix file
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# 2. Read the matrix file to obtain background information and sample characteristics data
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
background_info, clinical_data = get_background_and_clinical_data(
matrix_file,
background_prefixes,
clinical_prefixes
)
# 3. Obtain the sample characteristics dictionary from the clinical dataframe
sample_characteristics_dict = get_unique_values_by_row(clinical_data)
# 4. Explicitly print out all the background information and the sample characteristics dictionary
print("Background Information:")
print(background_info)
print("\nSample Characteristics Dictionary:")
print(sample_characteristics_dict)
# 1. Gene Expression Data Availability
# Based on the series title and summary ("Gene expression profiling..."),
# we conclude that gene expression data is indeed available.
is_gene_available = True
# 2. Variable Availability and Data Type Conversion
# From the sample characteristics dictionary, we see:
# 0 -> cell line info
# 1 -> knockdown info
# 2 -> treatment info
# 3 -> treatment compound concentration
# This dataset is an in vitro study using a HaCaT cell line.
# There is no human-level "Allergies" status, no age, and no gender data.
# Hence, for each variable (trait, age, gender), data is NOT available.
trait_row = None
age_row = None
gender_row = None
# Even though data is not available, we must define conversion functions.
# If called, they would handle extraction and conversion logic. Here, they return None.
def convert_trait(value: str):
# Placeholder implementation.
# Usually, we'd parse 'value' after the colon, e.g. value.split(':')[-1].strip().
# But since data is not available, always return None.
return None
def convert_age(value: str):
# Placeholder implementation.
return None
def convert_gender(value: str):
# Placeholder implementation.
return None
# 3. Save Metadata
# We do an initial validation using 'validate_and_save_cohort_info'.
# Trait data availability is determined by (trait_row is not None).
is_trait_available = (trait_row is not None)
is_usable = validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available
)
# 4. Clinical Feature Extraction
# Since trait_row is None, we skip the clinical extraction step.
# (No substep needed as there is no clinical data to extract.)
# STEP3
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
gene_data = get_genetic_data(matrix_file)
# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
print(gene_data.index[:20])
# Based on inspection, the identifiers "ILMN_xxxxxx" appear to be Illumina probe IDs, not standard human gene symbols.
# Therefore, gene symbol mapping is required.
print("requires_gene_mapping = True")
# STEP5
# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
gene_annotation = get_gene_annotation(soft_file)
# 2. Use the 'preview_df' function from the library to preview the data and print out the results.
print("Gene annotation preview:")
print(preview_df(gene_annotation))
# STEP: Gene Identifier Mapping
# 1) From the preview, the "ID" column in 'gene_annotation' matches the probe IDs in 'gene_data' (both have "ILMN_xxxxx" format),
# and the "Symbol" column holds the gene symbol information.
# 2) Create a mapping dataframe.
mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Symbol')
# 3) Convert probe-level measurements to gene-level by applying the mapping.
gene_data = apply_gene_mapping(gene_data, mapping_df)
# For confirmation, print out the shape and a small preview of the mapped gene_data.
print("Gene data shape after mapping:", gene_data.shape)
print(gene_data.head())
import pandas as pd
# STEP 5: Data Normalization and Linking
# 1. Normalize gene symbols in the obtained gene expression data
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
normalized_gene_data.to_csv(out_gene_data_file, index=True)
print(f"Saved normalized gene data to {out_gene_data_file}")
# Since in earlier steps trait_row was None, we have no clinical data to link.
# Hence, there's no trait column to process. We'll skip linking and further steps
# that require the trait. However, we must still perform a final validation.
# Prepare a dummy DataFrame for the final validation
dummy_df = pd.DataFrame()
# We must provide is_biased and df to the final validation.
# Because trait data is not available, this dataset won't be usable.
is_biased = False # Arbitrarily set; since trait is unavailable, "is_usable" will be False anyway.
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True, # Gene data is available
is_trait_available=False, # Trait data is not available
is_biased=is_biased,
df=dummy_df,
note="No trait data available; skipping linking."
)
# 6. If data were usable, we would save it; otherwise we do nothing
if is_usable:
print("Data is unexpectedly marked usable, but trait is unavailable. Skipping save.") |