File size: 4,888 Bytes
a3c6344
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Allergies"
cohort = "GSE205151"

# Input paths
in_trait_dir = "../DATA/GEO/Allergies"
in_cohort_dir = "../DATA/GEO/Allergies/GSE205151"

# Output paths
out_data_file = "./output/preprocess/1/Allergies/GSE205151.csv"
out_gene_data_file = "./output/preprocess/1/Allergies/gene_data/GSE205151.csv"
out_clinical_data_file = "./output/preprocess/1/Allergies/clinical_data/GSE205151.csv"
json_path = "./output/preprocess/1/Allergies/cohort_info.json"

# STEP 1

from tools.preprocess import *

# 1. Identify the paths to the SOFT file and the matrix file
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# 2. Read the matrix file to obtain background information and sample characteristics data
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
background_info, clinical_data = get_background_and_clinical_data(
    matrix_file, 
    background_prefixes, 
    clinical_prefixes
)

# 3. Obtain the sample characteristics dictionary from the clinical dataframe
sample_characteristics_dict = get_unique_values_by_row(clinical_data)

# 4. Explicitly print out all the background information and the sample characteristics dictionary
print("Background Information:")
print(background_info)
print("\nSample Characteristics Dictionary:")
print(sample_characteristics_dict)
# 1. Determine if gene expression data is available
is_gene_available = True  # This dataset includes mRNA analysis from a Nanostring array.

# 2. Identify data availability and define conversion functions

# Since the sample characteristics dictionary only shows "polyic_stimulation" and "cluster" data,
# and does not contain explicit or implicit information about the trait "Allergies", age, or gender,
# we set their row keys to None.
trait_row = None
age_row = None
gender_row = None

# Define data-type conversion functions
def convert_trait(x: str):
    """
    Convert a raw string to a binary indicator (0 or 1) or None.
    This is a placeholder function: no actual conversion logic is used
    here since 'trait_row' is None for this dataset.
    """
    return None

def convert_age(x: str):
    """
    Convert a raw string to a float age or None.
    This is a placeholder function: no actual conversion logic is used
    here since 'age_row' is None for this dataset.
    """
    return None

def convert_gender(x: str):
    """
    Convert a raw string to 0 (female), 1 (male), or None.
    This is a placeholder function: no actual conversion logic is used
    here since 'gender_row' is None for this dataset.
    """
    return None

# 3. Save metadata (initial filtering)
is_trait_available = (trait_row is not None)
_ = validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=is_trait_available
)

# 4. Clinical feature extraction (skip because trait_row is None)
# No clinical data extraction step is performed here.
# STEP3
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
gene_data = get_genetic_data(matrix_file)

# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
print(gene_data.index[:20])
# Observed gene identifiers are standard recognized human gene symbols, so no mapping is required.
requires_gene_mapping = False
import pandas as pd

# STEP 5: Data Normalization and Linking

# 1. Normalize gene symbols in the obtained gene expression data
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
normalized_gene_data.to_csv(out_gene_data_file, index=True)
print(f"Saved normalized gene data to {out_gene_data_file}")

# Since in earlier steps trait_row was None, we have no clinical data to link.
# Hence, there's no trait column to process. We'll skip linking and further steps
# that require the trait. However, we must still perform a final validation.

# Prepare a dummy DataFrame for the final validation
dummy_df = pd.DataFrame()

# We must provide is_biased and df to the final validation.
# Because trait data is not available, this dataset won't be usable.
is_biased = False  # Arbitrarily set; since trait is unavailable, "is_usable" will be False anyway.

is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=True,      # Gene data is available
    is_trait_available=False,    # Trait data is not available
    is_biased=is_biased,
    df=dummy_df,
    note="No trait data available; skipping linking."
)

# 6. If data were usable, we would save it; otherwise we do nothing
if is_usable:
    print("Data is unexpectedly marked usable, but trait is unavailable. Skipping save.")