File size: 5,608 Bytes
a3c6344
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Allergies"
cohort = "GSE230164"

# Input paths
in_trait_dir = "../DATA/GEO/Allergies"
in_cohort_dir = "../DATA/GEO/Allergies/GSE230164"

# Output paths
out_data_file = "./output/preprocess/1/Allergies/GSE230164.csv"
out_gene_data_file = "./output/preprocess/1/Allergies/gene_data/GSE230164.csv"
out_clinical_data_file = "./output/preprocess/1/Allergies/clinical_data/GSE230164.csv"
json_path = "./output/preprocess/1/Allergies/cohort_info.json"

# STEP1
from tools.preprocess import *

# 1. Identify the paths to the SOFT file and the matrix file
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# 2. Read the matrix file to obtain background information and sample characteristics data
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
background_info, clinical_data = get_background_and_clinical_data(
    matrix_file, 
    background_prefixes, 
    clinical_prefixes
)

# 3. Obtain the sample characteristics dictionary from the clinical dataframe
sample_characteristics_dict = get_unique_values_by_row(clinical_data)

# 4. Explicitly print out all the background information and the sample characteristics dictionary
print("Background Information:")
print(background_info)
print("Sample Characteristics Dictionary:")
print(sample_characteristics_dict)
# 1. Gene Expression Data Availability
is_gene_available = True  # Based on the "Gene expression profiling" title

# 2. Variable Availability and Data Type Conversion

# From the sample characteristics, we only see key=0 for "gender: female" and "gender: male".
# Therefore:
trait_row = None   # "Allergies" not found
age_row = None     # Age not found
gender_row = 0     # Found under key=0

# Conversion Functions
def convert_trait(value: str):
    # Since we don't have trait data, return None if called (function is here for completeness)
    return None

def convert_age(value: str):
    # Since we don't have age data, return None if called (function is here for completeness)
    return None

def convert_gender(value: str):
    # Split at ':' and pick the last portion, then convert to 0/1
    val = value.split(':')[-1].strip().lower()
    if val == 'female':
        return 0
    elif val == 'male':
        return 1
    return None

# 3. Initial Filtering and Saving Metadata
# trait_row is None => trait data is not available
is_trait_available = (trait_row is not None)

is_usable = validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=is_trait_available
)

# 4. Clinical Feature Extraction is skipped because trait_row is None
# STEP3
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
gene_data = get_genetic_data(matrix_file)

# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
print(gene_data.index[:20])
# These identifiers (e.g., ILMN_1343291) are Illumina probe IDs rather than standard gene symbols.
# Therefore, they need to be mapped to gene symbols.

print("requires_gene_mapping = True")
# STEP5
# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
gene_annotation = get_gene_annotation(soft_file)

# 2. Use the 'preview_df' function from the library to preview the data and print out the results.
print("Gene annotation preview:")
print(preview_df(gene_annotation))
# STEP: Gene Identifier Mapping

# 1. Select the columns from the gene_annotation dataframe for probe ID and gene symbol.
#    From the preview, the "ID" column matches the probe identifiers and "Symbol" stores the gene symbols.
mapping_df = get_gene_mapping(gene_annotation, prob_col="ID", gene_col="Symbol")

# 2. Apply the mapping to convert probe-level data into gene-level data.
gene_data = apply_gene_mapping(gene_data, mapping_df)

# (Optional) Peek at the results
print("Gene expression dataframe shape:", gene_data.shape)
print("First 10 gene symbols:", list(gene_data.index[:10]))
import pandas as pd

# STEP 7: Data Normalization and Linking

# In this dataset, the trait is unavailable (trait_row was None), so we cannot proceed with linking or final processing
# that relies on clinical trait data. Instead, we record the dataset's unavailability without performing final validation.

# We still have a gene_data DataFrame from the previous steps. Let's normalize and save it.
# Although the clinical data is not usable (no trait), we can still provide the normalized gene data CSV
# for reference purposes.

# 1. Normalize gene symbols in the obtained gene expression data
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
normalized_gene_data.to_csv(out_gene_data_file, index=True)
print(f"Saved normalized gene data to {out_gene_data_file}")

# 2. Since trait data is unavailable, we skip linking and downstream processing.

# 3. Record that the trait is missing via validate_and_save_cohort_info with is_final=False.
#    This avoids the requirement to provide 'df' and 'is_biased' parameters.
validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=True,  # We do have gene expression data
    is_trait_available=False,  # No trait data
    note="Trait data not available; further steps were skipped."
)

print("Trait data was missing, so final linking and downstream steps were skipped.")