File size: 5,141 Bytes
a3c6344 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Allergies"
cohort = "GSE270312"
# Input paths
in_trait_dir = "../DATA/GEO/Allergies"
in_cohort_dir = "../DATA/GEO/Allergies/GSE270312"
# Output paths
out_data_file = "./output/preprocess/1/Allergies/GSE270312.csv"
out_gene_data_file = "./output/preprocess/1/Allergies/gene_data/GSE270312.csv"
out_clinical_data_file = "./output/preprocess/1/Allergies/clinical_data/GSE270312.csv"
json_path = "./output/preprocess/1/Allergies/cohort_info.json"
# STEP1
from tools.preprocess import *
# 1. Identify the paths to the SOFT file and the matrix file
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# 2. Read the matrix file to obtain background information and sample characteristics data
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
background_info, clinical_data = get_background_and_clinical_data(
matrix_file,
background_prefixes,
clinical_prefixes
)
# 3. Obtain the sample characteristics dictionary from the clinical dataframe
sample_characteristics_dict = get_unique_values_by_row(clinical_data)
# 4. Explicitly print out all the background information and the sample characteristics dictionary
print("Background Information:")
print(background_info)
print("Sample Characteristics Dictionary:")
print(sample_characteristics_dict)
# 1. Gene Expression Data Availability
is_gene_available = True # Based on the transcriptome data (nanostring)
# 2. Variable Availability and Data Type Conversion
# From the sample characteristics dictionary, we see that:
# - 'allergic rhinitis status: Yes/No' corresponds to allergies, i.e., trait_row = 5
# - No age information is available => age_row = None
# - 'gender: Female/Male' => gender_row = 2
trait_row = 5
age_row = None
gender_row = 2
# Define the conversion functions
def convert_trait(value: str):
# Extract the part after the colon and strip spaces
val = value.split(':')[-1].strip().lower()
if val == 'yes':
return 1
elif val == 'no':
return 0
return None # For unknown or unexpected values
def convert_age(value: str):
# Not applicable here, so just return None
return None
def convert_gender(value: str):
val = value.split(':')[-1].strip().lower()
if val == 'female':
return 0
elif val == 'male':
return 1
return None
# 3. Save Metadata (Initial Filtering)
is_trait_available = (trait_row is not None)
is_usable = validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available
)
# 4. Clinical Feature Extraction (only if trait data is available)
if trait_row is not None:
selected_clinical_df = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=None,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview the extracted clinical DataFrame
preview_result = preview_df(selected_clinical_df)
print("Preview of selected clinical features:", preview_result)
# Save the clinical features to CSV
selected_clinical_df.to_csv(out_clinical_data_file, index=False)
# STEP3
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
gene_data = get_genetic_data(matrix_file)
# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
print(gene_data.index[:20])
# These identifiers appear to be valid human gene symbols.
# Hence, no additional mapping is required.
requires_gene_mapping = False
# STEP 6: Data Normalization and Linking
# 1. Normalize gene symbols in the obtained gene expression data
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
normalized_gene_data.to_csv(out_gene_data_file, index=True)
print(f"Saved normalized gene data to {out_gene_data_file}")
# 2. Link the clinical and genetic data on sample IDs
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)
# 3. Handle missing values in the linked data systematically
linked_data_processed = handle_missing_values(linked_data, trait)
# 4. Determine whether the trait and demographic features are biased
is_trait_biased, linked_data_processed = judge_and_remove_biased_features(linked_data_processed, trait)
# 5. Conduct final validation and record information
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=is_trait_biased,
df=linked_data_processed,
note="Final step completed with trait and gene data available."
)
# 6. If the linked data is usable, save it; otherwise, do not save
if is_usable:
linked_data_processed.to_csv(out_data_file)
print(f"Final linked data saved to {out_data_file}") |