File size: 5,141 Bytes
a3c6344
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Allergies"
cohort = "GSE270312"

# Input paths
in_trait_dir = "../DATA/GEO/Allergies"
in_cohort_dir = "../DATA/GEO/Allergies/GSE270312"

# Output paths
out_data_file = "./output/preprocess/1/Allergies/GSE270312.csv"
out_gene_data_file = "./output/preprocess/1/Allergies/gene_data/GSE270312.csv"
out_clinical_data_file = "./output/preprocess/1/Allergies/clinical_data/GSE270312.csv"
json_path = "./output/preprocess/1/Allergies/cohort_info.json"

# STEP1
from tools.preprocess import *

# 1. Identify the paths to the SOFT file and the matrix file
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# 2. Read the matrix file to obtain background information and sample characteristics data
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
background_info, clinical_data = get_background_and_clinical_data(
    matrix_file, 
    background_prefixes, 
    clinical_prefixes
)

# 3. Obtain the sample characteristics dictionary from the clinical dataframe
sample_characteristics_dict = get_unique_values_by_row(clinical_data)

# 4. Explicitly print out all the background information and the sample characteristics dictionary
print("Background Information:")
print(background_info)
print("Sample Characteristics Dictionary:")
print(sample_characteristics_dict)
# 1. Gene Expression Data Availability
is_gene_available = True  # Based on the transcriptome data (nanostring)

# 2. Variable Availability and Data Type Conversion
# From the sample characteristics dictionary, we see that:
#   - 'allergic rhinitis status: Yes/No' corresponds to allergies, i.e., trait_row = 5
#   - No age information is available => age_row = None
#   - 'gender: Female/Male' => gender_row = 2

trait_row = 5
age_row = None
gender_row = 2

# Define the conversion functions
def convert_trait(value: str):
    # Extract the part after the colon and strip spaces
    val = value.split(':')[-1].strip().lower()
    if val == 'yes':
        return 1
    elif val == 'no':
        return 0
    return None  # For unknown or unexpected values

def convert_age(value: str):
    # Not applicable here, so just return None
    return None

def convert_gender(value: str):
    val = value.split(':')[-1].strip().lower()
    if val == 'female':
        return 0
    elif val == 'male':
        return 1
    return None

# 3. Save Metadata (Initial Filtering)
is_trait_available = (trait_row is not None)
is_usable = validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=is_trait_available
)

# 4. Clinical Feature Extraction (only if trait data is available)
if trait_row is not None:
    selected_clinical_df = geo_select_clinical_features(
        clinical_df=clinical_data,
        trait=trait,
        trait_row=trait_row,
        convert_trait=convert_trait,
        age_row=age_row,
        convert_age=None,
        gender_row=gender_row,
        convert_gender=convert_gender
    )
    # Preview the extracted clinical DataFrame
    preview_result = preview_df(selected_clinical_df)
    print("Preview of selected clinical features:", preview_result)

    # Save the clinical features to CSV
    selected_clinical_df.to_csv(out_clinical_data_file, index=False)
# STEP3
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
gene_data = get_genetic_data(matrix_file)

# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
print(gene_data.index[:20])
# These identifiers appear to be valid human gene symbols.
# Hence, no additional mapping is required.
requires_gene_mapping = False

# STEP 6: Data Normalization and Linking

# 1. Normalize gene symbols in the obtained gene expression data
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
normalized_gene_data.to_csv(out_gene_data_file, index=True)
print(f"Saved normalized gene data to {out_gene_data_file}")

# 2. Link the clinical and genetic data on sample IDs
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)

# 3. Handle missing values in the linked data systematically
linked_data_processed = handle_missing_values(linked_data, trait)

# 4. Determine whether the trait and demographic features are biased
is_trait_biased, linked_data_processed = judge_and_remove_biased_features(linked_data_processed, trait)

# 5. Conduct final validation and record information
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=True,
    is_trait_available=True,
    is_biased=is_trait_biased,
    df=linked_data_processed,
    note="Final step completed with trait and gene data available."
)

# 6. If the linked data is usable, save it; otherwise, do not save
if is_usable:
    linked_data_processed.to_csv(out_data_file)
    print(f"Final linked data saved to {out_data_file}")