File size: 5,911 Bytes
a3c6344
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Allergies"
cohort = "GSE84046"

# Input paths
in_trait_dir = "../DATA/GEO/Allergies"
in_cohort_dir = "../DATA/GEO/Allergies/GSE84046"

# Output paths
out_data_file = "./output/preprocess/1/Allergies/GSE84046.csv"
out_gene_data_file = "./output/preprocess/1/Allergies/gene_data/GSE84046.csv"
out_clinical_data_file = "./output/preprocess/1/Allergies/clinical_data/GSE84046.csv"
json_path = "./output/preprocess/1/Allergies/cohort_info.json"

# STEP1
from tools.preprocess import *

# 1. Identify the paths to the SOFT file and the matrix file
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# 2. Read the matrix file to obtain background information and sample characteristics data
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
background_info, clinical_data = get_background_and_clinical_data(
    matrix_file, 
    background_prefixes, 
    clinical_prefixes
)

# 3. Obtain the sample characteristics dictionary from the clinical dataframe
sample_characteristics_dict = get_unique_values_by_row(clinical_data)

# 4. Explicitly print out all the background information and the sample characteristics dictionary
print("Background Information:")
print(background_info)
print("Sample Characteristics Dictionary:")
print(sample_characteristics_dict)
# 1. Gene Expression Data Availability
is_gene_available = True  # The study clearly mentions "whole genome gene expression" in adipose tissue.

# 2. Variable Availability
# Trait (Allergies): Not found in the sample characteristics.
trait_row = None
# Age: We can infer from date of birth, which is stored under key=5 "date of birth".
age_row = 5
# Gender: Found under key=4 "sexe: Male/Female".
gender_row = 4

# 2.2 Data Type Conversion Functions
def convert_trait(value: str):
    # No trait data, so return None.
    return None

def convert_age(value: str):
    # Example format: "date of birth (dd-mm-yyyy): 1952-06-17"
    # We parse out '1952-06-17' and convert it to approximate age.
    try:
        date_str = value.split(':', 1)[1].strip()  # e.g. "1952-06-17"
        birth_year = int(date_str.split('-')[0])
        # Approximate age by subtracting from current year
        approx_age = 2023 - birth_year
        if approx_age < 0 or approx_age > 120:
            return None
        return float(approx_age)
    except:
        return None

def convert_gender(value: str):
    # Example format: "sexe: Male" or "sexe: Female"
    try:
        gender_str = value.split(':', 1)[1].strip().lower()
        if gender_str == "male":
            return 1
        elif gender_str == "female":
            return 0
        else:
            return None
    except:
        return None

# 3. Save Metadata (Initial Filtering)
is_trait_available = (trait_row is not None)
validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=is_trait_available
)

# 4. Clinical Feature Extraction
# Since trait_row is None, we skip extracting clinical features for the trait "Allergies".
# STEP3
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
gene_data = get_genetic_data(matrix_file)

# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
print(gene_data.index[:20])
# The gene identifiers in the provided index are numeric, suggesting they are not standard human gene symbols.
# These likely need to be mapped to gene symbols.

requires_gene_mapping = True
# STEP5
# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
gene_annotation = get_gene_annotation(soft_file)

# 2. Use the 'preview_df' function from the library to preview the data and print out the results.
print("Gene annotation preview:")
print(preview_df(gene_annotation))
# STEP: Gene Identifier Mapping

# 1. Decide which columns in 'gene_annotation' match the probe IDs in 'gene_data' (i.e., "ID") 
#    and which column contains text that can lead to actual gene symbols (i.e., "gene_assignment").
prob_col = "ID"
gene_col = "gene_assignment"

# 2. Get a gene mapping dataframe using these two columns.
gene_mapping_df = get_gene_mapping(gene_annotation, prob_col, gene_col)

# 3. Apply the gene mapping to convert probe-level data to gene-level data.
gene_data = apply_gene_mapping(gene_data, gene_mapping_df)
# STEP 7: Data Normalization and Linking

# In this dataset, we determined in Step 2 that trait data is not available (trait_row = None).
# Therefore, we cannot link clinical and genetic data or perform trait-based processing.
# Nonetheless, we can still normalize probe-level data to standard gene symbols and finalize validation.

# 1. Normalize gene symbols in the obtained gene expression data
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
normalized_gene_data.to_csv(out_gene_data_file, index=True)

# 2. Since trait data is missing, skip linking clinical and genetic data, 
#    skip missing-value handling and bias detection for the trait.

# 3. Conduct final validation and record info.
#    Since trait data is unavailable, set is_trait_available=False, 
#    pass a dummy/empty DataFrame and is_biased=False (it won't be used).
dummy_df = pd.DataFrame()
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=True,
    is_trait_available=False,
    is_biased=False,
    df=dummy_df,
    note="No trait data found; skipped clinical-linking steps."
)

# 4. If the dataset were usable, save. In this scenario, it's not usable due to missing trait data.
if is_usable:
    dummy_df.to_csv(out_data_file, index=True)