File size: 6,359 Bytes
f426016
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Angelman_Syndrome"
cohort = "GSE43900"

# Input paths
in_trait_dir = "../DATA/GEO/Angelman_Syndrome"
in_cohort_dir = "../DATA/GEO/Angelman_Syndrome/GSE43900"

# Output paths
out_data_file = "./output/preprocess/1/Angelman_Syndrome/GSE43900.csv"
out_gene_data_file = "./output/preprocess/1/Angelman_Syndrome/gene_data/GSE43900.csv"
out_clinical_data_file = "./output/preprocess/1/Angelman_Syndrome/clinical_data/GSE43900.csv"
json_path = "./output/preprocess/1/Angelman_Syndrome/cohort_info.json"

# STEP 1

from tools.preprocess import *

# 1. Identify the paths to the SOFT file and the matrix file
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# 2. Read the matrix file to obtain background information and sample characteristics data
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
background_info, clinical_data = get_background_and_clinical_data(
    matrix_file, 
    background_prefixes, 
    clinical_prefixes
)

# 3. Obtain the sample characteristics dictionary from the clinical dataframe
sample_characteristics_dict = get_unique_values_by_row(clinical_data)

# 4. Explicitly print out all the background information and the sample characteristics dictionary
print("Background Information:")
print(background_info)
print("\nSample Characteristics Dictionary:")
print(sample_characteristics_dict)
# 1. Determine if the dataset likely contains gene expression data
is_gene_available = True  # From background info, it appears to focus on gene regulation, so we assume gene expression data

# 2. Variable Availability and Data Type Conversion

# According to the sample characteristics dictionary, we only have:
#    0: treatment information,
#    1: cell type, and
#    2: strain.
# None indicates that the dataset does not provide suitable human trait, age, or gender info.
trait_row = None
age_row = None
gender_row = None

# Define the conversion functions (though they won't be used if rows are None).

def convert_trait(x: str) -> int:
    # No actual data available, placeholder implementation
    return None

def convert_age(x: str) -> float:
    # No actual data available, placeholder implementation
    return None

def convert_gender(x: str) -> int:
    # No actual data available, placeholder implementation
    return None

# 3. Save Metadata (initial filtering)
is_trait_available = (trait_row is not None)
validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=is_trait_available
)

# 4. Clinical Feature Extraction (skip because trait_row is None)
# No action needed as trait_row is None
# STEP3
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
gene_data = get_genetic_data(matrix_file)

# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
print(gene_data.index[:20])
# Based on observation, the identifiers are numeric probe IDs and do not appear to be standard human gene symbols.
# Therefore, gene mapping is required.
print("requires_gene_mapping = True")
# STEP5
# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
gene_annotation = get_gene_annotation(soft_file)

# 2. Use the 'preview_df' function from the library to preview the data and print out the results.
print("Gene annotation preview:")
print(preview_df(gene_annotation))
# STEP: Gene Identifier Mapping

# 1. Decide the columns for gene identifier (probe) and gene symbol based on the preview.
probe_col = "ID"
gene_symbol_col = "Gene Symbol"

# 2. Get the mapping dataframe from the annotation.
mapping_df = get_gene_mapping(gene_annotation, probe_col, gene_symbol_col)

# 3. Convert probe-level measurements to gene-level expression data.
gene_data = apply_gene_mapping(gene_data, mapping_df)

# Display the first few gene symbols to confirm the result.
print(gene_data.index[:20])
# STEP 7: Data Normalization and Linking

# 1. Normalize gene symbols in the obtained gene expression data
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
normalized_gene_data.to_csv(out_gene_data_file)
print(f"Saved normalized gene data to {out_gene_data_file}")

# 2. Check if the trait is available in this dataset
if trait_row is None:
    # If the trait does not exist, we do not finalize; we do an initial validation
    # so that the library won't require 'df' and 'is_biased'.
    validate_and_save_cohort_info(
        is_final=False,
        cohort=cohort,
        info_path=json_path,
        is_gene_available=True,         # Genetic data is present
        is_trait_available=False        # Trait data is not available
    )
    print("Trait data not available. Only gene expression data was processed. No final data to save.")

else:
    # 3. Since trait is available, link the clinical and genetic data on sample IDs
    selected_clinical_df = geo_select_clinical_features(
        clinical_data,
        trait,
        trait_row,
        convert_trait,
        age_row,
        convert_age,
        gender_row,
        convert_gender
    )
    linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)

    # 4. Handle missing values as instructed
    linked_data = handle_missing_values(linked_data, trait)

    # 5. Determine whether the trait is severely biased
    trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

    # 6. Conduct final quality validation and save metadata
    is_usable = validate_and_save_cohort_info(
        is_final=True,
        cohort=cohort,
        info_path=json_path,
        is_gene_available=True,
        is_trait_available=True,
        is_biased=trait_biased,
        df=linked_data,
        note="Cohort data successfully processed with trait-based analysis."
    )

    # 7. If the dataset is usable, save the final linked data
    if is_usable:
        linked_data.to_csv(out_data_file, index=True)
        print(f"Saved final linked data to {out_data_file}")
    else:
        print("The dataset is not usable for trait-based association. Skipping final output.")