File size: 6,359 Bytes
f426016 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Angelman_Syndrome"
cohort = "GSE43900"
# Input paths
in_trait_dir = "../DATA/GEO/Angelman_Syndrome"
in_cohort_dir = "../DATA/GEO/Angelman_Syndrome/GSE43900"
# Output paths
out_data_file = "./output/preprocess/1/Angelman_Syndrome/GSE43900.csv"
out_gene_data_file = "./output/preprocess/1/Angelman_Syndrome/gene_data/GSE43900.csv"
out_clinical_data_file = "./output/preprocess/1/Angelman_Syndrome/clinical_data/GSE43900.csv"
json_path = "./output/preprocess/1/Angelman_Syndrome/cohort_info.json"
# STEP 1
from tools.preprocess import *
# 1. Identify the paths to the SOFT file and the matrix file
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# 2. Read the matrix file to obtain background information and sample characteristics data
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
background_info, clinical_data = get_background_and_clinical_data(
matrix_file,
background_prefixes,
clinical_prefixes
)
# 3. Obtain the sample characteristics dictionary from the clinical dataframe
sample_characteristics_dict = get_unique_values_by_row(clinical_data)
# 4. Explicitly print out all the background information and the sample characteristics dictionary
print("Background Information:")
print(background_info)
print("\nSample Characteristics Dictionary:")
print(sample_characteristics_dict)
# 1. Determine if the dataset likely contains gene expression data
is_gene_available = True # From background info, it appears to focus on gene regulation, so we assume gene expression data
# 2. Variable Availability and Data Type Conversion
# According to the sample characteristics dictionary, we only have:
# 0: treatment information,
# 1: cell type, and
# 2: strain.
# None indicates that the dataset does not provide suitable human trait, age, or gender info.
trait_row = None
age_row = None
gender_row = None
# Define the conversion functions (though they won't be used if rows are None).
def convert_trait(x: str) -> int:
# No actual data available, placeholder implementation
return None
def convert_age(x: str) -> float:
# No actual data available, placeholder implementation
return None
def convert_gender(x: str) -> int:
# No actual data available, placeholder implementation
return None
# 3. Save Metadata (initial filtering)
is_trait_available = (trait_row is not None)
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available
)
# 4. Clinical Feature Extraction (skip because trait_row is None)
# No action needed as trait_row is None
# STEP3
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
gene_data = get_genetic_data(matrix_file)
# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
print(gene_data.index[:20])
# Based on observation, the identifiers are numeric probe IDs and do not appear to be standard human gene symbols.
# Therefore, gene mapping is required.
print("requires_gene_mapping = True")
# STEP5
# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
gene_annotation = get_gene_annotation(soft_file)
# 2. Use the 'preview_df' function from the library to preview the data and print out the results.
print("Gene annotation preview:")
print(preview_df(gene_annotation))
# STEP: Gene Identifier Mapping
# 1. Decide the columns for gene identifier (probe) and gene symbol based on the preview.
probe_col = "ID"
gene_symbol_col = "Gene Symbol"
# 2. Get the mapping dataframe from the annotation.
mapping_df = get_gene_mapping(gene_annotation, probe_col, gene_symbol_col)
# 3. Convert probe-level measurements to gene-level expression data.
gene_data = apply_gene_mapping(gene_data, mapping_df)
# Display the first few gene symbols to confirm the result.
print(gene_data.index[:20])
# STEP 7: Data Normalization and Linking
# 1. Normalize gene symbols in the obtained gene expression data
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
normalized_gene_data.to_csv(out_gene_data_file)
print(f"Saved normalized gene data to {out_gene_data_file}")
# 2. Check if the trait is available in this dataset
if trait_row is None:
# If the trait does not exist, we do not finalize; we do an initial validation
# so that the library won't require 'df' and 'is_biased'.
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=True, # Genetic data is present
is_trait_available=False # Trait data is not available
)
print("Trait data not available. Only gene expression data was processed. No final data to save.")
else:
# 3. Since trait is available, link the clinical and genetic data on sample IDs
selected_clinical_df = geo_select_clinical_features(
clinical_data,
trait,
trait_row,
convert_trait,
age_row,
convert_age,
gender_row,
convert_gender
)
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)
# 4. Handle missing values as instructed
linked_data = handle_missing_values(linked_data, trait)
# 5. Determine whether the trait is severely biased
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 6. Conduct final quality validation and save metadata
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=trait_biased,
df=linked_data,
note="Cohort data successfully processed with trait-based analysis."
)
# 7. If the dataset is usable, save the final linked data
if is_usable:
linked_data.to_csv(out_data_file, index=True)
print(f"Saved final linked data to {out_data_file}")
else:
print("The dataset is not usable for trait-based association. Skipping final output.") |