File size: 6,130 Bytes
f426016
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Aniridia"
cohort = "GSE137996"

# Input paths
in_trait_dir = "../DATA/GEO/Aniridia"
in_cohort_dir = "../DATA/GEO/Aniridia/GSE137996"

# Output paths
out_data_file = "./output/preprocess/1/Aniridia/GSE137996.csv"
out_gene_data_file = "./output/preprocess/1/Aniridia/gene_data/GSE137996.csv"
out_clinical_data_file = "./output/preprocess/1/Aniridia/clinical_data/GSE137996.csv"
json_path = "./output/preprocess/1/Aniridia/cohort_info.json"

# STEP 1

from tools.preprocess import *

# 1. Identify the paths to the SOFT file and the matrix file
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# 2. Read the matrix file to obtain background information and sample characteristics data
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
background_info, clinical_data = get_background_and_clinical_data(
    matrix_file, 
    background_prefixes, 
    clinical_prefixes
)

# 3. Obtain the sample characteristics dictionary from the clinical dataframe
sample_characteristics_dict = get_unique_values_by_row(clinical_data)

# 4. Explicitly print out all the background information and the sample characteristics dictionary
print("Background Information:")
print(background_info)
print("\nSample Characteristics Dictionary:")
print(sample_characteristics_dict)
# Step 1: Determine if gene expression data is available
# Based on the background info (mRNA expression and microRNA data), we consider this dataset to have gene expression data.
is_gene_available = True

# Step 2: Identify availability for trait, age, and gender, and define conversion functions.

# From the sample characteristics:
#   row 0 => age
#   row 1 => gender
#   row 2 => disease (AAK / healthy control)
#
# We treat 'disease' as the trait variable, 'age' as continuous, and 'gender' as binary.

trait_row = 2
age_row = 0
gender_row = 1

def convert_trait(x: str) -> int:
    # Extract the raw value after the colon
    val = x.split(':')[-1].strip().lower()
    # Convert to binary: 1 for aniridia (AAK), 0 for control, None otherwise
    if val == 'aak':
        return 1
    elif val == 'healthy control':
        return 0
    return None

def convert_age(x: str) -> float:
    # Extract the raw value after the colon
    val = x.split(':')[-1].strip()
    # Convert to float if possible
    try:
        return float(val)
    except ValueError:
        return None

def convert_gender(x: str) -> int:
    # Extract the raw value after the colon
    val = x.split(':')[-1].strip().lower()
    # Convert F/M/W to binary: female => 0, male => 1
    if val in ['f', 'w']:
        return 0
    elif val == 'm':
        return 1
    return None

# Step 3: Initial filtering and saving metadata
is_trait_available = (trait_row is not None)

validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=is_trait_available
)

# Step 4: Clinical feature extraction (only if trait_row is not None)
if trait_row is not None:
    selected_clinical_df = geo_select_clinical_features(
        clinical_data,
        trait=trait,  # "Aniridia"
        trait_row=trait_row,
        convert_trait=convert_trait,
        age_row=age_row,
        convert_age=convert_age,
        gender_row=gender_row,
        convert_gender=convert_gender
    )

    # Preview extracted clinical features
    previewed_data = preview_df(selected_clinical_df)
    print("Preview of selected clinical data:", previewed_data)

    # Save clinical features to CSV
    selected_clinical_df.to_csv(out_clinical_data_file, index=False)
# STEP3
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
gene_data = get_genetic_data(matrix_file)

# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
print(gene_data.index[:20])
# After reviewing the identifiers such as "A_19_P00315452", they appear to be array probe IDs and not standard gene symbols.
# Therefore, gene symbol mapping is required.
print("requires_gene_mapping = True")
# STEP5
# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
gene_annotation = get_gene_annotation(soft_file)

# 2. Use the 'preview_df' function from the library to preview the data and print out the results.
print("Gene annotation preview:")
print(preview_df(gene_annotation))
# Gene Identifier Mapping
mapping_df = get_gene_mapping(gene_annotation, prob_col="ID", gene_col="GENE_SYMBOL")
gene_data = apply_gene_mapping(gene_data, mapping_df)
# STEP 7: Data Normalization and Linking

# 1. Normalize gene symbols in the obtained gene expression data
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
normalized_gene_data.to_csv(out_gene_data_file)
print(f"Saved normalized gene data to {out_gene_data_file}")

# 2. Link the clinical and genetic data on sample IDs
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)

# 3. Handle missing values, removing or imputing as instructed
linked_data = handle_missing_values(linked_data, trait)

# 4. Determine whether the trait (and potentially other features) is severely biased.
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

# 5. Conduct final quality validation and save metadata
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=True,
    is_trait_available=True,   # We do have a trait column
    is_biased=trait_biased,
    df=linked_data,
    note="Cohort data successfully processed with trait-based analysis."
)

# 6. If the dataset is usable, save the final linked data
if is_usable:
    linked_data.to_csv(out_data_file, index=True)
    print(f"Saved final linked data to {out_data_file}")
else:
    print("The dataset is not usable for trait-based association. Skipping final output.")