File size: 6,130 Bytes
f426016 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Aniridia"
cohort = "GSE137996"
# Input paths
in_trait_dir = "../DATA/GEO/Aniridia"
in_cohort_dir = "../DATA/GEO/Aniridia/GSE137996"
# Output paths
out_data_file = "./output/preprocess/1/Aniridia/GSE137996.csv"
out_gene_data_file = "./output/preprocess/1/Aniridia/gene_data/GSE137996.csv"
out_clinical_data_file = "./output/preprocess/1/Aniridia/clinical_data/GSE137996.csv"
json_path = "./output/preprocess/1/Aniridia/cohort_info.json"
# STEP 1
from tools.preprocess import *
# 1. Identify the paths to the SOFT file and the matrix file
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# 2. Read the matrix file to obtain background information and sample characteristics data
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
background_info, clinical_data = get_background_and_clinical_data(
matrix_file,
background_prefixes,
clinical_prefixes
)
# 3. Obtain the sample characteristics dictionary from the clinical dataframe
sample_characteristics_dict = get_unique_values_by_row(clinical_data)
# 4. Explicitly print out all the background information and the sample characteristics dictionary
print("Background Information:")
print(background_info)
print("\nSample Characteristics Dictionary:")
print(sample_characteristics_dict)
# Step 1: Determine if gene expression data is available
# Based on the background info (mRNA expression and microRNA data), we consider this dataset to have gene expression data.
is_gene_available = True
# Step 2: Identify availability for trait, age, and gender, and define conversion functions.
# From the sample characteristics:
# row 0 => age
# row 1 => gender
# row 2 => disease (AAK / healthy control)
#
# We treat 'disease' as the trait variable, 'age' as continuous, and 'gender' as binary.
trait_row = 2
age_row = 0
gender_row = 1
def convert_trait(x: str) -> int:
# Extract the raw value after the colon
val = x.split(':')[-1].strip().lower()
# Convert to binary: 1 for aniridia (AAK), 0 for control, None otherwise
if val == 'aak':
return 1
elif val == 'healthy control':
return 0
return None
def convert_age(x: str) -> float:
# Extract the raw value after the colon
val = x.split(':')[-1].strip()
# Convert to float if possible
try:
return float(val)
except ValueError:
return None
def convert_gender(x: str) -> int:
# Extract the raw value after the colon
val = x.split(':')[-1].strip().lower()
# Convert F/M/W to binary: female => 0, male => 1
if val in ['f', 'w']:
return 0
elif val == 'm':
return 1
return None
# Step 3: Initial filtering and saving metadata
is_trait_available = (trait_row is not None)
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available
)
# Step 4: Clinical feature extraction (only if trait_row is not None)
if trait_row is not None:
selected_clinical_df = geo_select_clinical_features(
clinical_data,
trait=trait, # "Aniridia"
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview extracted clinical features
previewed_data = preview_df(selected_clinical_df)
print("Preview of selected clinical data:", previewed_data)
# Save clinical features to CSV
selected_clinical_df.to_csv(out_clinical_data_file, index=False)
# STEP3
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
gene_data = get_genetic_data(matrix_file)
# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
print(gene_data.index[:20])
# After reviewing the identifiers such as "A_19_P00315452", they appear to be array probe IDs and not standard gene symbols.
# Therefore, gene symbol mapping is required.
print("requires_gene_mapping = True")
# STEP5
# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
gene_annotation = get_gene_annotation(soft_file)
# 2. Use the 'preview_df' function from the library to preview the data and print out the results.
print("Gene annotation preview:")
print(preview_df(gene_annotation))
# Gene Identifier Mapping
mapping_df = get_gene_mapping(gene_annotation, prob_col="ID", gene_col="GENE_SYMBOL")
gene_data = apply_gene_mapping(gene_data, mapping_df)
# STEP 7: Data Normalization and Linking
# 1. Normalize gene symbols in the obtained gene expression data
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
normalized_gene_data.to_csv(out_gene_data_file)
print(f"Saved normalized gene data to {out_gene_data_file}")
# 2. Link the clinical and genetic data on sample IDs
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)
# 3. Handle missing values, removing or imputing as instructed
linked_data = handle_missing_values(linked_data, trait)
# 4. Determine whether the trait (and potentially other features) is severely biased.
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Conduct final quality validation and save metadata
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True, # We do have a trait column
is_biased=trait_biased,
df=linked_data,
note="Cohort data successfully processed with trait-based analysis."
)
# 6. If the dataset is usable, save the final linked data
if is_usable:
linked_data.to_csv(out_data_file, index=True)
print(f"Saved final linked data to {out_data_file}")
else:
print("The dataset is not usable for trait-based association. Skipping final output.") |