File size: 5,800 Bytes
f426016
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Aniridia"
cohort = "GSE137997"

# Input paths
in_trait_dir = "../DATA/GEO/Aniridia"
in_cohort_dir = "../DATA/GEO/Aniridia/GSE137997"

# Output paths
out_data_file = "./output/preprocess/1/Aniridia/GSE137997.csv"
out_gene_data_file = "./output/preprocess/1/Aniridia/gene_data/GSE137997.csv"
out_clinical_data_file = "./output/preprocess/1/Aniridia/clinical_data/GSE137997.csv"
json_path = "./output/preprocess/1/Aniridia/cohort_info.json"

# STEP 1

from tools.preprocess import *

# 1. Identify the paths to the SOFT file and the matrix file
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# 2. Read the matrix file to obtain background information and sample characteristics data
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
background_info, clinical_data = get_background_and_clinical_data(
    matrix_file, 
    background_prefixes, 
    clinical_prefixes
)

# 3. Obtain the sample characteristics dictionary from the clinical dataframe
sample_characteristics_dict = get_unique_values_by_row(clinical_data)

# 4. Explicitly print out all the background information and the sample characteristics dictionary
print("Background Information:")
print(background_info)
print("\nSample Characteristics Dictionary:")
print(sample_characteristics_dict)
# 1. Determine if gene expression data is available
is_gene_available = True  # The title mentions "mRNA" alongside miRNA, so we consider gene expression data present.

# 2. Identify rows for trait, age, and gender, and define their conversion functions

# Based on the sample characteristics dictionary:
#   0 -> age data
#   1 -> gender data
#   2 -> "disease: AAK" or "disease: healthy control"
# This suggests:
trait_row = 2
age_row = 0
gender_row = 1

def convert_trait(value: str) -> int:
    """
    Convert 'disease: AAK' or 'disease: healthy control' to binary (1 for aniridia, 0 for control).
    Unknown or unexpected values become None.
    """
    try:
        val = value.split(':', 1)[1].strip().lower()
        if 'aak' in val:
            return 1
        elif 'healthy' in val:
            return 0
        else:
            return None
    except:
        return None

def convert_age(value: str) -> float:
    """
    Convert 'age: 20' etc. to a float (continuous). Unknown values become None.
    """
    try:
        val = value.split(':', 1)[1].strip()
        return float(val)
    except:
        return None

def convert_gender(value: str) -> int:
    """
    Convert 'gender: F', 'gender: M', 'gender: W' to binary (female=0, male=1).
    'W' presumed female. Unknown or unexpected become None.
    """
    try:
        val = value.split(':', 1)[1].strip().lower()
        if val in ['f', 'w', 'female', 'woman', 'women']:
            return 0
        elif val in ['m', 'male']:
            return 1
        else:
            return None
    except:
        return None

# 3. Conduct initial filtering and save metadata
is_trait_available = (trait_row is not None)
validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=is_trait_available
)

# 4. Clinical feature extraction if trait data is available
if trait_row is not None:
    selected_clinical_df = geo_select_clinical_features(
        clinical_df=clinical_data,
        trait=trait,
        trait_row=trait_row,
        convert_trait=convert_trait,
        age_row=age_row,
        convert_age=convert_age,
        gender_row=gender_row,
        convert_gender=convert_gender
    )
    # Preview
    preview_result = preview_df(selected_clinical_df)
    print("Preview of selected clinical features:", preview_result)
    # Save clinical data
    selected_clinical_df.to_csv(out_clinical_data_file, index=False)
# STEP3
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
gene_data = get_genetic_data(matrix_file)

# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
print(gene_data.index[:20])
# These are microRNA identifiers (e.g. hsa-miR-1-3p) rather than standard human gene symbols;
# they do not require further mapping to gene symbols.
print("requires_gene_mapping = False")
# STEP 7: Data Normalization and Linking

# 1. Normalize gene symbols in the obtained gene expression data
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
normalized_gene_data.to_csv(out_gene_data_file)
print(f"Saved normalized gene data to {out_gene_data_file}")

# 2. Link the clinical and genetic data on sample IDs
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)

# 3. Handle missing values, removing or imputing as instructed
linked_data = handle_missing_values(linked_data, trait)

# 4. Determine whether the trait (and potentially other features) is severely biased.
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

# 5. Conduct final quality validation and save metadata
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=True,
    is_trait_available=True,   # We do have a trait column
    is_biased=trait_biased,
    df=linked_data,
    note="Cohort data successfully processed with trait-based analysis."
)

# 6. If the dataset is usable, save the final linked data
if is_usable:
    linked_data.to_csv(out_data_file, index=True)
    print(f"Saved final linked data to {out_data_file}")
else:
    print("The dataset is not usable for trait-based association. Skipping final output.")