File size: 5,800 Bytes
f426016 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Aniridia"
cohort = "GSE137997"
# Input paths
in_trait_dir = "../DATA/GEO/Aniridia"
in_cohort_dir = "../DATA/GEO/Aniridia/GSE137997"
# Output paths
out_data_file = "./output/preprocess/1/Aniridia/GSE137997.csv"
out_gene_data_file = "./output/preprocess/1/Aniridia/gene_data/GSE137997.csv"
out_clinical_data_file = "./output/preprocess/1/Aniridia/clinical_data/GSE137997.csv"
json_path = "./output/preprocess/1/Aniridia/cohort_info.json"
# STEP 1
from tools.preprocess import *
# 1. Identify the paths to the SOFT file and the matrix file
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# 2. Read the matrix file to obtain background information and sample characteristics data
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
background_info, clinical_data = get_background_and_clinical_data(
matrix_file,
background_prefixes,
clinical_prefixes
)
# 3. Obtain the sample characteristics dictionary from the clinical dataframe
sample_characteristics_dict = get_unique_values_by_row(clinical_data)
# 4. Explicitly print out all the background information and the sample characteristics dictionary
print("Background Information:")
print(background_info)
print("\nSample Characteristics Dictionary:")
print(sample_characteristics_dict)
# 1. Determine if gene expression data is available
is_gene_available = True # The title mentions "mRNA" alongside miRNA, so we consider gene expression data present.
# 2. Identify rows for trait, age, and gender, and define their conversion functions
# Based on the sample characteristics dictionary:
# 0 -> age data
# 1 -> gender data
# 2 -> "disease: AAK" or "disease: healthy control"
# This suggests:
trait_row = 2
age_row = 0
gender_row = 1
def convert_trait(value: str) -> int:
"""
Convert 'disease: AAK' or 'disease: healthy control' to binary (1 for aniridia, 0 for control).
Unknown or unexpected values become None.
"""
try:
val = value.split(':', 1)[1].strip().lower()
if 'aak' in val:
return 1
elif 'healthy' in val:
return 0
else:
return None
except:
return None
def convert_age(value: str) -> float:
"""
Convert 'age: 20' etc. to a float (continuous). Unknown values become None.
"""
try:
val = value.split(':', 1)[1].strip()
return float(val)
except:
return None
def convert_gender(value: str) -> int:
"""
Convert 'gender: F', 'gender: M', 'gender: W' to binary (female=0, male=1).
'W' presumed female. Unknown or unexpected become None.
"""
try:
val = value.split(':', 1)[1].strip().lower()
if val in ['f', 'w', 'female', 'woman', 'women']:
return 0
elif val in ['m', 'male']:
return 1
else:
return None
except:
return None
# 3. Conduct initial filtering and save metadata
is_trait_available = (trait_row is not None)
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available
)
# 4. Clinical feature extraction if trait data is available
if trait_row is not None:
selected_clinical_df = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview
preview_result = preview_df(selected_clinical_df)
print("Preview of selected clinical features:", preview_result)
# Save clinical data
selected_clinical_df.to_csv(out_clinical_data_file, index=False)
# STEP3
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
gene_data = get_genetic_data(matrix_file)
# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
print(gene_data.index[:20])
# These are microRNA identifiers (e.g. hsa-miR-1-3p) rather than standard human gene symbols;
# they do not require further mapping to gene symbols.
print("requires_gene_mapping = False")
# STEP 7: Data Normalization and Linking
# 1. Normalize gene symbols in the obtained gene expression data
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
normalized_gene_data.to_csv(out_gene_data_file)
print(f"Saved normalized gene data to {out_gene_data_file}")
# 2. Link the clinical and genetic data on sample IDs
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)
# 3. Handle missing values, removing or imputing as instructed
linked_data = handle_missing_values(linked_data, trait)
# 4. Determine whether the trait (and potentially other features) is severely biased.
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Conduct final quality validation and save metadata
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True, # We do have a trait column
is_biased=trait_biased,
df=linked_data,
note="Cohort data successfully processed with trait-based analysis."
)
# 6. If the dataset is usable, save the final linked data
if is_usable:
linked_data.to_csv(out_data_file, index=True)
print(f"Saved final linked data to {out_data_file}")
else:
print("The dataset is not usable for trait-based association. Skipping final output.") |