File size: 6,803 Bytes
f426016
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Aniridia"
cohort = "GSE204791"

# Input paths
in_trait_dir = "../DATA/GEO/Aniridia"
in_cohort_dir = "../DATA/GEO/Aniridia/GSE204791"

# Output paths
out_data_file = "./output/preprocess/1/Aniridia/GSE204791.csv"
out_gene_data_file = "./output/preprocess/1/Aniridia/gene_data/GSE204791.csv"
out_clinical_data_file = "./output/preprocess/1/Aniridia/clinical_data/GSE204791.csv"
json_path = "./output/preprocess/1/Aniridia/cohort_info.json"

# STEP 1

from tools.preprocess import *

# 1. Identify the paths to the SOFT file and the matrix file
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# 2. Read the matrix file to obtain background information and sample characteristics data
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
background_info, clinical_data = get_background_and_clinical_data(
    matrix_file, 
    background_prefixes, 
    clinical_prefixes
)

# 3. Obtain the sample characteristics dictionary from the clinical dataframe
sample_characteristics_dict = get_unique_values_by_row(clinical_data)

# 4. Explicitly print out all the background information and the sample characteristics dictionary
print("Background Information:")
print(background_info)
print("\nSample Characteristics Dictionary:")
print(sample_characteristics_dict)
# 1. Gene Expression Data Availability
is_gene_available = True  # The series includes mRNA expression, so we consider it gene expression data.

# 2. Variable Availability and Data Type Conversion
#   2.1 Determine row indices for 'trait', 'age', 'gender'
#       Based on the sample characteristics dictionary:
#         - 0: ['age: 59', 'age: 28', ... ]
#         - 1: ['gender: F', 'gender: M']
#         - 2: ['disease: KC', 'disease: healthy control']
#         - 3: [ ... staging info ... ]
#       We are looking for "Aniridia" but our dictionary lists "KC" or "healthy control" for disease.
#       Hence, we do not have data for "Aniridia." So trait_row = None.

trait_row = None  # No data on "Aniridia" found
age_row = 0       # Multiple ages are present
gender_row = 1    # "F" and "M" are present

#   2.2 Write conversion functions
def convert_trait(val: str):
    """
    Attempt to parse 'Aniridia' or 'control' from the string after the colon.
    Since 'Aniridia' is not actually in our sample data, return None.
    """
    return None

def convert_age(val: str):
    """
    Parse the value after the colon and convert to float.
    Non-numeric or invalid data is converted to None.
    """
    parts = val.split(':')
    if len(parts) < 2:
        return None
    raw_value = parts[1].strip()
    try:
        return float(raw_value)
    except ValueError:
        return None

def convert_gender(val: str):
    """
    Parse the value after the colon and convert:
      F -> 0
      M -> 1
      Otherwise -> None
    """
    parts = val.split(':')
    if len(parts) < 2:
        return None
    raw_value = parts[1].strip().upper()
    if raw_value == 'F':
        return 0
    elif raw_value == 'M':
        return 1
    else:
        return None

# 3. Save Metadata
#    Trait data availability is determined by whether trait_row is None.
is_trait_available = (trait_row is not None)

#    Perform initial filtering (is_final=False).
#    This will record metadata if data fails initial filtering.
is_usable = validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=is_trait_available
)

# 4. Clinical Feature Extraction
#    Since trait_row is None, clinical data extraction is skipped.
# STEP3
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
gene_data = get_genetic_data(matrix_file)

# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
print(gene_data.index[:20])
# These identifiers appear to be microarray probe IDs or custom probe identifiers rather than standard human gene symbols.
# Therefore, they need to be mapped to gene symbols.

requires_gene_mapping = True
# STEP5
# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
gene_annotation = get_gene_annotation(soft_file)

# 2. Use the 'preview_df' function from the library to preview the data and print out the results.
print("Gene annotation preview:")
print(preview_df(gene_annotation))
# Gene Identifier Mapping

# 1. Identify which columns correspond to the expression data's probe ID and to the gene symbols.
#    From the annotation preview, "ID" appears to match the probe identifiers (e.g., "A_19_P..."),
#    and "GENE_SYMBOL" appears to be the gene symbol column.

probe_id_col = "ID"
gene_symbol_col = "GENE_SYMBOL"

# 2. Extract the mapping information between probe IDs and gene symbols.
gene_mapping_df = get_gene_mapping(gene_annotation, probe_id_col, gene_symbol_col)

# 3. Apply the mapping to convert probe-level data into gene-level data.
gene_data = apply_gene_mapping(gene_data, gene_mapping_df)
# STEP 7: Data Normalization and Linking

import pandas as pd

# Since in previous steps we determined trait_row = None (no available trait data),
# we cannot link clinical data or perform trait-based filtering. Hence, we skip steps
# that depend on clinical or trait information.

# 1. Normalize gene symbols in the obtained gene expression data
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
normalized_gene_data.to_csv(out_gene_data_file)
print(f"Saved normalized gene data to {out_gene_data_file}")

# 2. No trait data found; skip clinical linking, missing-value handling, and bias assessment.
print("No trait data found. Skipping clinical linking, missing-value handling, and bias assessment.")

# 3. Conduct final quality validation and save metadata.
#    Since there's no trait data, we must pass some dummy DataFrame and a boolean for is_biased
#    to avoid the ValueError in final mode.
dummy_df = pd.DataFrame()
is_biased_dummy = False  # Arbitrary placeholder since we can't assess bias
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=True,
    is_trait_available=False,
    is_biased=is_biased_dummy,
    df=dummy_df,
    note="Trait data not found; dataset cannot be used for trait-based analysis."
)

# 4. Because we don't have usable trait data, skip saving the linked data
if is_usable:
    # This case should not occur since there's no trait data
    pass
else:
    print("The dataset is not usable for trait-based association. Skipping final output.")