File size: 6,803 Bytes
f426016 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Aniridia"
cohort = "GSE204791"
# Input paths
in_trait_dir = "../DATA/GEO/Aniridia"
in_cohort_dir = "../DATA/GEO/Aniridia/GSE204791"
# Output paths
out_data_file = "./output/preprocess/1/Aniridia/GSE204791.csv"
out_gene_data_file = "./output/preprocess/1/Aniridia/gene_data/GSE204791.csv"
out_clinical_data_file = "./output/preprocess/1/Aniridia/clinical_data/GSE204791.csv"
json_path = "./output/preprocess/1/Aniridia/cohort_info.json"
# STEP 1
from tools.preprocess import *
# 1. Identify the paths to the SOFT file and the matrix file
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# 2. Read the matrix file to obtain background information and sample characteristics data
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
background_info, clinical_data = get_background_and_clinical_data(
matrix_file,
background_prefixes,
clinical_prefixes
)
# 3. Obtain the sample characteristics dictionary from the clinical dataframe
sample_characteristics_dict = get_unique_values_by_row(clinical_data)
# 4. Explicitly print out all the background information and the sample characteristics dictionary
print("Background Information:")
print(background_info)
print("\nSample Characteristics Dictionary:")
print(sample_characteristics_dict)
# 1. Gene Expression Data Availability
is_gene_available = True # The series includes mRNA expression, so we consider it gene expression data.
# 2. Variable Availability and Data Type Conversion
# 2.1 Determine row indices for 'trait', 'age', 'gender'
# Based on the sample characteristics dictionary:
# - 0: ['age: 59', 'age: 28', ... ]
# - 1: ['gender: F', 'gender: M']
# - 2: ['disease: KC', 'disease: healthy control']
# - 3: [ ... staging info ... ]
# We are looking for "Aniridia" but our dictionary lists "KC" or "healthy control" for disease.
# Hence, we do not have data for "Aniridia." So trait_row = None.
trait_row = None # No data on "Aniridia" found
age_row = 0 # Multiple ages are present
gender_row = 1 # "F" and "M" are present
# 2.2 Write conversion functions
def convert_trait(val: str):
"""
Attempt to parse 'Aniridia' or 'control' from the string after the colon.
Since 'Aniridia' is not actually in our sample data, return None.
"""
return None
def convert_age(val: str):
"""
Parse the value after the colon and convert to float.
Non-numeric or invalid data is converted to None.
"""
parts = val.split(':')
if len(parts) < 2:
return None
raw_value = parts[1].strip()
try:
return float(raw_value)
except ValueError:
return None
def convert_gender(val: str):
"""
Parse the value after the colon and convert:
F -> 0
M -> 1
Otherwise -> None
"""
parts = val.split(':')
if len(parts) < 2:
return None
raw_value = parts[1].strip().upper()
if raw_value == 'F':
return 0
elif raw_value == 'M':
return 1
else:
return None
# 3. Save Metadata
# Trait data availability is determined by whether trait_row is None.
is_trait_available = (trait_row is not None)
# Perform initial filtering (is_final=False).
# This will record metadata if data fails initial filtering.
is_usable = validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available
)
# 4. Clinical Feature Extraction
# Since trait_row is None, clinical data extraction is skipped.
# STEP3
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
gene_data = get_genetic_data(matrix_file)
# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
print(gene_data.index[:20])
# These identifiers appear to be microarray probe IDs or custom probe identifiers rather than standard human gene symbols.
# Therefore, they need to be mapped to gene symbols.
requires_gene_mapping = True
# STEP5
# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
gene_annotation = get_gene_annotation(soft_file)
# 2. Use the 'preview_df' function from the library to preview the data and print out the results.
print("Gene annotation preview:")
print(preview_df(gene_annotation))
# Gene Identifier Mapping
# 1. Identify which columns correspond to the expression data's probe ID and to the gene symbols.
# From the annotation preview, "ID" appears to match the probe identifiers (e.g., "A_19_P..."),
# and "GENE_SYMBOL" appears to be the gene symbol column.
probe_id_col = "ID"
gene_symbol_col = "GENE_SYMBOL"
# 2. Extract the mapping information between probe IDs and gene symbols.
gene_mapping_df = get_gene_mapping(gene_annotation, probe_id_col, gene_symbol_col)
# 3. Apply the mapping to convert probe-level data into gene-level data.
gene_data = apply_gene_mapping(gene_data, gene_mapping_df)
# STEP 7: Data Normalization and Linking
import pandas as pd
# Since in previous steps we determined trait_row = None (no available trait data),
# we cannot link clinical data or perform trait-based filtering. Hence, we skip steps
# that depend on clinical or trait information.
# 1. Normalize gene symbols in the obtained gene expression data
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
normalized_gene_data.to_csv(out_gene_data_file)
print(f"Saved normalized gene data to {out_gene_data_file}")
# 2. No trait data found; skip clinical linking, missing-value handling, and bias assessment.
print("No trait data found. Skipping clinical linking, missing-value handling, and bias assessment.")
# 3. Conduct final quality validation and save metadata.
# Since there's no trait data, we must pass some dummy DataFrame and a boolean for is_biased
# to avoid the ValueError in final mode.
dummy_df = pd.DataFrame()
is_biased_dummy = False # Arbitrary placeholder since we can't assess bias
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=False,
is_biased=is_biased_dummy,
df=dummy_df,
note="Trait data not found; dataset cannot be used for trait-based analysis."
)
# 4. Because we don't have usable trait data, skip saving the linked data
if is_usable:
# This case should not occur since there's no trait data
pass
else:
print("The dataset is not usable for trait-based association. Skipping final output.") |