File size: 6,976 Bytes
f426016
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Anorexia_Nervosa"
cohort = "GSE60190"

# Input paths
in_trait_dir = "../DATA/GEO/Anorexia_Nervosa"
in_cohort_dir = "../DATA/GEO/Anorexia_Nervosa/GSE60190"

# Output paths
out_data_file = "./output/preprocess/1/Anorexia_Nervosa/GSE60190.csv"
out_gene_data_file = "./output/preprocess/1/Anorexia_Nervosa/gene_data/GSE60190.csv"
out_clinical_data_file = "./output/preprocess/1/Anorexia_Nervosa/clinical_data/GSE60190.csv"
json_path = "./output/preprocess/1/Anorexia_Nervosa/cohort_info.json"

# STEP 1

from tools.preprocess import *

# 1. Identify the paths to the SOFT file and the matrix file
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# 2. Read the matrix file to obtain background information and sample characteristics data
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
background_info, clinical_data = get_background_and_clinical_data(
    matrix_file, 
    background_prefixes, 
    clinical_prefixes
)

# 3. Obtain the sample characteristics dictionary from the clinical dataframe
sample_characteristics_dict = get_unique_values_by_row(clinical_data)

# 4. Explicitly print out all the background information and the sample characteristics dictionary
print("Background Information:")
print(background_info)
print("\nSample Characteristics Dictionary:")
print(sample_characteristics_dict)
# 1. Determine if gene expression data is available
# Based on the background info (Illumina HumanHT-12 v3 microarray measurements),
# we conclude that gene expression data is available.
is_gene_available = True

# 2. Identify rows and define conversion functions for trait, age, and gender.

# After examining the sample characteristics dictionary, we select:
# - trait information in row 3 ("dx: ED", "dx: OCD", "dx: Control", etc.)
#   We'll map "dx: ED" -> 1 (our trait of interest, albeit grouped as ED)
#   and everything else -> 0.
trait_row = 3

# - age information in row 5 (e.g., "age: 50.421917")
age_row = 5

# - gender information in row 7 (e.g., "Sex: F" or "Sex: M")
gender_row = 7

def convert_trait(x: str) -> Optional[int]:
    parts = x.split(":", 1)
    if len(parts) < 2:
        return None
    val = parts[1].strip()
    # Convert "ED" to 1, others (including OCD, Control, etc.) to 0
    return 1 if val == "ED" else 0

def convert_age(x: str) -> Optional[float]:
    parts = x.split(":", 1)
    if len(parts) < 2:
        return None
    val = parts[1].strip()
    try:
        return float(val)
    except ValueError:
        return None

def convert_gender(x: str) -> Optional[int]:
    parts = x.split(":", 1)
    if len(parts) < 2:
        return None
    val = parts[1].strip()
    # Map "F" -> 0, "M" -> 1
    if val == "F":
        return 0
    elif val == "M":
        return 1
    return None

# 2.1 Check if trait data is available
# We consider trait data available if trait_row is not None
is_trait_available = (trait_row is not None)

# 3. Perform initial filtering and save metadata
# (is_final=False for initial filtering)
is_usable = validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=is_trait_available
)

# 4. If trait_row is not None, extract clinical features, preview, and save
if trait_row is not None:
    clinical_data_selected = geo_select_clinical_features(
        clinical_df=clinical_data,
        trait=trait,
        trait_row=trait_row,
        convert_trait=convert_trait,
        age_row=age_row,
        convert_age=convert_age,
        gender_row=gender_row,
        convert_gender=convert_gender
    )
    # Preview the selected clinical data
    preview = preview_df(clinical_data_selected)
    print("Preview of selected clinical features:", preview)

    # Save the clinical features to CSV
    clinical_data_selected.to_csv(out_clinical_data_file)
# STEP3
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
gene_data = get_genetic_data(matrix_file)

# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
print(gene_data.index[:20])
print("These are Illumina probe identifiers (e.g., ILMN_xxxx), which are not human gene symbols and thus require mapping.")
print("requires_gene_mapping = True")
# STEP5
# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
gene_annotation = get_gene_annotation(soft_file)

# 2. Use the 'preview_df' function from the library to preview the data and print out the results.
print("Gene annotation preview:")
print(preview_df(gene_annotation))
# STEP6 - Gene Identifier Mapping

# 1. Identify the columns for probe IDs and gene symbols in the gene_annotation DataFrame.
#    From observing the data preview, "ID" holds Illumina probe identifiers matching our gene_data index,
#    and "Symbol" holds the gene symbol information.
mapping_df = get_gene_mapping(gene_annotation, prob_col="ID", gene_col="Symbol")

# 2. Apply this mapping to the probe-level expression data to get gene-level expression data.
gene_data = apply_gene_mapping(gene_data, mapping_df)

# Now, 'gene_data' contains gene expression values indexed by gene symbols.
# STEP 7: Data Normalization and Linking

# 1. Normalize gene symbols in the obtained gene expression data
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
normalized_gene_data.to_csv(out_gene_data_file)
print(f"Saved normalized gene data to {out_gene_data_file}")

# Make sure we have the clinical data in scope.
# In previous steps, we stored it as 'clinical_data_selected', so define 'selected_clinical' for consistency here.
selected_clinical = clinical_data_selected

# 2. Link the clinical and genetic data on sample IDs
linked_data = geo_link_clinical_genetic_data(selected_clinical, normalized_gene_data)

# 3. Handle missing values, removing or imputing as instructed
linked_data = handle_missing_values(linked_data, trait)

# 4. Determine whether the trait (and potentially other features) is severely biased.
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

# 5. Conduct final quality validation and save metadata
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=True,
    is_trait_available=True,  # We do have a trait column
    is_biased=trait_biased,
    df=linked_data,
    note="Cohort data successfully processed with trait-based analysis."
)

# 6. If the dataset is usable, save the final linked data
if is_usable:
    linked_data.to_csv(out_data_file, index=True)
    print(f"Saved final linked data to {out_data_file}")
else:
    print("The dataset is not usable for trait-based association. Skipping final output.")