File size: 6,976 Bytes
f426016 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Anorexia_Nervosa"
cohort = "GSE60190"
# Input paths
in_trait_dir = "../DATA/GEO/Anorexia_Nervosa"
in_cohort_dir = "../DATA/GEO/Anorexia_Nervosa/GSE60190"
# Output paths
out_data_file = "./output/preprocess/1/Anorexia_Nervosa/GSE60190.csv"
out_gene_data_file = "./output/preprocess/1/Anorexia_Nervosa/gene_data/GSE60190.csv"
out_clinical_data_file = "./output/preprocess/1/Anorexia_Nervosa/clinical_data/GSE60190.csv"
json_path = "./output/preprocess/1/Anorexia_Nervosa/cohort_info.json"
# STEP 1
from tools.preprocess import *
# 1. Identify the paths to the SOFT file and the matrix file
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# 2. Read the matrix file to obtain background information and sample characteristics data
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
background_info, clinical_data = get_background_and_clinical_data(
matrix_file,
background_prefixes,
clinical_prefixes
)
# 3. Obtain the sample characteristics dictionary from the clinical dataframe
sample_characteristics_dict = get_unique_values_by_row(clinical_data)
# 4. Explicitly print out all the background information and the sample characteristics dictionary
print("Background Information:")
print(background_info)
print("\nSample Characteristics Dictionary:")
print(sample_characteristics_dict)
# 1. Determine if gene expression data is available
# Based on the background info (Illumina HumanHT-12 v3 microarray measurements),
# we conclude that gene expression data is available.
is_gene_available = True
# 2. Identify rows and define conversion functions for trait, age, and gender.
# After examining the sample characteristics dictionary, we select:
# - trait information in row 3 ("dx: ED", "dx: OCD", "dx: Control", etc.)
# We'll map "dx: ED" -> 1 (our trait of interest, albeit grouped as ED)
# and everything else -> 0.
trait_row = 3
# - age information in row 5 (e.g., "age: 50.421917")
age_row = 5
# - gender information in row 7 (e.g., "Sex: F" or "Sex: M")
gender_row = 7
def convert_trait(x: str) -> Optional[int]:
parts = x.split(":", 1)
if len(parts) < 2:
return None
val = parts[1].strip()
# Convert "ED" to 1, others (including OCD, Control, etc.) to 0
return 1 if val == "ED" else 0
def convert_age(x: str) -> Optional[float]:
parts = x.split(":", 1)
if len(parts) < 2:
return None
val = parts[1].strip()
try:
return float(val)
except ValueError:
return None
def convert_gender(x: str) -> Optional[int]:
parts = x.split(":", 1)
if len(parts) < 2:
return None
val = parts[1].strip()
# Map "F" -> 0, "M" -> 1
if val == "F":
return 0
elif val == "M":
return 1
return None
# 2.1 Check if trait data is available
# We consider trait data available if trait_row is not None
is_trait_available = (trait_row is not None)
# 3. Perform initial filtering and save metadata
# (is_final=False for initial filtering)
is_usable = validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available
)
# 4. If trait_row is not None, extract clinical features, preview, and save
if trait_row is not None:
clinical_data_selected = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview the selected clinical data
preview = preview_df(clinical_data_selected)
print("Preview of selected clinical features:", preview)
# Save the clinical features to CSV
clinical_data_selected.to_csv(out_clinical_data_file)
# STEP3
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
gene_data = get_genetic_data(matrix_file)
# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
print(gene_data.index[:20])
print("These are Illumina probe identifiers (e.g., ILMN_xxxx), which are not human gene symbols and thus require mapping.")
print("requires_gene_mapping = True")
# STEP5
# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
gene_annotation = get_gene_annotation(soft_file)
# 2. Use the 'preview_df' function from the library to preview the data and print out the results.
print("Gene annotation preview:")
print(preview_df(gene_annotation))
# STEP6 - Gene Identifier Mapping
# 1. Identify the columns for probe IDs and gene symbols in the gene_annotation DataFrame.
# From observing the data preview, "ID" holds Illumina probe identifiers matching our gene_data index,
# and "Symbol" holds the gene symbol information.
mapping_df = get_gene_mapping(gene_annotation, prob_col="ID", gene_col="Symbol")
# 2. Apply this mapping to the probe-level expression data to get gene-level expression data.
gene_data = apply_gene_mapping(gene_data, mapping_df)
# Now, 'gene_data' contains gene expression values indexed by gene symbols.
# STEP 7: Data Normalization and Linking
# 1. Normalize gene symbols in the obtained gene expression data
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
normalized_gene_data.to_csv(out_gene_data_file)
print(f"Saved normalized gene data to {out_gene_data_file}")
# Make sure we have the clinical data in scope.
# In previous steps, we stored it as 'clinical_data_selected', so define 'selected_clinical' for consistency here.
selected_clinical = clinical_data_selected
# 2. Link the clinical and genetic data on sample IDs
linked_data = geo_link_clinical_genetic_data(selected_clinical, normalized_gene_data)
# 3. Handle missing values, removing or imputing as instructed
linked_data = handle_missing_values(linked_data, trait)
# 4. Determine whether the trait (and potentially other features) is severely biased.
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Conduct final quality validation and save metadata
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True, # We do have a trait column
is_biased=trait_biased,
df=linked_data,
note="Cohort data successfully processed with trait-based analysis."
)
# 6. If the dataset is usable, save the final linked data
if is_usable:
linked_data.to_csv(out_data_file, index=True)
print(f"Saved final linked data to {out_data_file}")
else:
print("The dataset is not usable for trait-based association. Skipping final output.") |