File size: 7,522 Bytes
f426016
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Anxiety_disorder"
cohort = "GSE68526"

# Input paths
in_trait_dir = "../DATA/GEO/Anxiety_disorder"
in_cohort_dir = "../DATA/GEO/Anxiety_disorder/GSE68526"

# Output paths
out_data_file = "./output/preprocess/1/Anxiety_disorder/GSE68526.csv"
out_gene_data_file = "./output/preprocess/1/Anxiety_disorder/gene_data/GSE68526.csv"
out_clinical_data_file = "./output/preprocess/1/Anxiety_disorder/clinical_data/GSE68526.csv"
json_path = "./output/preprocess/1/Anxiety_disorder/cohort_info.json"

# STEP 1

from tools.preprocess import *

# 1. Identify the paths to the SOFT file and the matrix file
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# 2. Read the matrix file to obtain background information and sample characteristics data
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
background_info, clinical_data = get_background_and_clinical_data(
    matrix_file, 
    background_prefixes, 
    clinical_prefixes
)

# 3. Obtain the sample characteristics dictionary from the clinical dataframe
sample_characteristics_dict = get_unique_values_by_row(clinical_data)

# 4. Explicitly print out all the background information and the sample characteristics dictionary
print("Background Information:")
print(background_info)
print("\nSample Characteristics Dictionary:")
print(sample_characteristics_dict)
# 1. Determine if gene expression data is available
is_gene_available = True  # Based on the background info: "Gene expression profiling was carried out ..."
# 2. Determine availability of trait, age, gender, and define conversion functions

# From the dictionary, anxiety is at row 13 and has multiple distinct values.
trait_row = 13

# Age is at row 0, with multiple distinct values.
age_row = 0

# Gender is at row 1, with two distinct values (female: 0 or 1).
gender_row = 1

# Data type conversions:
def convert_trait(value: str):
    """
    Convert the anxiety string value after colon to a float (continuous measure).
    Returns None if 'missing' or conversion fails.
    """
    # Example: "anxiety: 1.4"
    try:
        val_str = value.split(':', 1)[1].strip()
        if val_str.lower() == "missing":
            return None
        return float(val_str)
    except:
        return None

def convert_age(value: str):
    """
    Convert the age string value after colon to a float (continuous measure).
    Returns None if conversion fails.
    """
    # Example: "age (yrs): 76"
    try:
        val_str = value.split(':', 1)[1].strip()
        return float(val_str)
    except:
        return None

def convert_gender(value: str):
    """
    Convert the gender string value after colon to binary (female=0, male=1).
    The data is stored as 'female: 0' or 'female: 1'.
    'female: 1' means the subject is female -> 0
    'female: 0' means the subject is male -> 1
    Returns None if conversion fails.
    """
    try:
        val_str = value.split(':', 1)[1].strip()
        if val_str == "1":
            return 0  # female
        elif val_str == "0":
            return 1  # male
        return None
    except:
        return None

# 3. Save metadata with initial filtering
is_trait_available = (trait_row is not None)
is_usable = validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=is_trait_available
)

# 4. Clinical feature extraction if trait_row is not None
if trait_row is not None:
    # Assume "clinical_data" is the DataFrame containing sample characteristics
    # from a previous step in the pipeline
    selected_clinical = geo_select_clinical_features(
        clinical_df=clinical_data,
        trait=trait,
        trait_row=trait_row,
        convert_trait=convert_trait,
        age_row=age_row,
        convert_age=convert_age,
        gender_row=gender_row,
        convert_gender=convert_gender
    )
    preview = preview_df(selected_clinical, n=5, max_items=200)
    # Optionally observe the preview (not printing to avoid extra text, but you could if needed)
    selected_clinical.to_csv(out_clinical_data_file, index=False)
# STEP3
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
gene_data = get_genetic_data(matrix_file)

# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
print(gene_data.index[:20])
# Based on the observed identifiers, some (like "A2BP1", "7A5") appear to be old or non-standard.
# Hence, they likely need to be mapped to official gene symbols.

requires_gene_mapping = True
# STEP5
# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
gene_annotation = get_gene_annotation(soft_file)

# 2. Use the 'preview_df' function from the library to preview the data and print out the results.
print("Gene annotation preview:")
print(preview_df(gene_annotation))
# STEP: Gene Identifier Mapping

# 1) Identify columns in `gene_annotation` corresponding to probe IDs and gene symbols.
#    From the previous preview, "ID" in the gene annotation matches the expression data's IDs,
#    and "ORF" appears to hold the same text which we'll treat as the gene symbol column.

# 2) Get the gene mapping dataframe.
mapping_df = get_gene_mapping(annotation=gene_annotation, prob_col='ID', gene_col='ORF')

# 3) Apply mapping to convert probe-level measurements to gene-level expression.
gene_data = apply_gene_mapping(expression_df=gene_data, mapping_df=mapping_df)

# (Optional) Print basic info to confirm successful mapping.
print("Mapped gene data shape:", gene_data.shape)
print("First 20 mapped gene symbols:", list(gene_data.index[:20]))
# STEP 7: Data Normalization and Linking

import pandas as pd

# 1. Normalize gene symbols in the obtained gene expression data
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
normalized_gene_data.to_csv(out_gene_data_file)
print(f"Saved normalized gene data to {out_gene_data_file}")

# Ensure "selected_clinical" is defined by reading from our previously saved CSV.
temp_df = pd.read_csv(out_clinical_data_file)
# Step 2 extracts trait, age, gender => we expect exactly 3 rows
if temp_df.shape[0] == 3:
    temp_df.index = [trait, "Age", "Gender"]
selected_clinical = temp_df

# 2. Link the clinical and genetic data on sample IDs
linked_data = geo_link_clinical_genetic_data(selected_clinical, normalized_gene_data)

# 3. Handle missing values, removing or imputing as instructed
linked_data = handle_missing_values(linked_data, trait)

# 4. Determine whether the trait (and potentially other features) is severely biased.
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

# 5. Conduct final quality validation and save metadata
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=True,
    is_trait_available=True,
    is_biased=trait_biased,
    df=linked_data,
    note="Cohort data successfully processed with trait-based analysis."
)

# 6. If the dataset is usable, save the final linked data
if is_usable:
    linked_data.to_csv(out_data_file, index=True)
    print(f"Saved final linked data to {out_data_file}")
else:
    print("The dataset is not usable for trait-based association. Skipping final output.")