File size: 7,522 Bytes
f426016 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Anxiety_disorder"
cohort = "GSE68526"
# Input paths
in_trait_dir = "../DATA/GEO/Anxiety_disorder"
in_cohort_dir = "../DATA/GEO/Anxiety_disorder/GSE68526"
# Output paths
out_data_file = "./output/preprocess/1/Anxiety_disorder/GSE68526.csv"
out_gene_data_file = "./output/preprocess/1/Anxiety_disorder/gene_data/GSE68526.csv"
out_clinical_data_file = "./output/preprocess/1/Anxiety_disorder/clinical_data/GSE68526.csv"
json_path = "./output/preprocess/1/Anxiety_disorder/cohort_info.json"
# STEP 1
from tools.preprocess import *
# 1. Identify the paths to the SOFT file and the matrix file
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# 2. Read the matrix file to obtain background information and sample characteristics data
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
background_info, clinical_data = get_background_and_clinical_data(
matrix_file,
background_prefixes,
clinical_prefixes
)
# 3. Obtain the sample characteristics dictionary from the clinical dataframe
sample_characteristics_dict = get_unique_values_by_row(clinical_data)
# 4. Explicitly print out all the background information and the sample characteristics dictionary
print("Background Information:")
print(background_info)
print("\nSample Characteristics Dictionary:")
print(sample_characteristics_dict)
# 1. Determine if gene expression data is available
is_gene_available = True # Based on the background info: "Gene expression profiling was carried out ..."
# 2. Determine availability of trait, age, gender, and define conversion functions
# From the dictionary, anxiety is at row 13 and has multiple distinct values.
trait_row = 13
# Age is at row 0, with multiple distinct values.
age_row = 0
# Gender is at row 1, with two distinct values (female: 0 or 1).
gender_row = 1
# Data type conversions:
def convert_trait(value: str):
"""
Convert the anxiety string value after colon to a float (continuous measure).
Returns None if 'missing' or conversion fails.
"""
# Example: "anxiety: 1.4"
try:
val_str = value.split(':', 1)[1].strip()
if val_str.lower() == "missing":
return None
return float(val_str)
except:
return None
def convert_age(value: str):
"""
Convert the age string value after colon to a float (continuous measure).
Returns None if conversion fails.
"""
# Example: "age (yrs): 76"
try:
val_str = value.split(':', 1)[1].strip()
return float(val_str)
except:
return None
def convert_gender(value: str):
"""
Convert the gender string value after colon to binary (female=0, male=1).
The data is stored as 'female: 0' or 'female: 1'.
'female: 1' means the subject is female -> 0
'female: 0' means the subject is male -> 1
Returns None if conversion fails.
"""
try:
val_str = value.split(':', 1)[1].strip()
if val_str == "1":
return 0 # female
elif val_str == "0":
return 1 # male
return None
except:
return None
# 3. Save metadata with initial filtering
is_trait_available = (trait_row is not None)
is_usable = validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available
)
# 4. Clinical feature extraction if trait_row is not None
if trait_row is not None:
# Assume "clinical_data" is the DataFrame containing sample characteristics
# from a previous step in the pipeline
selected_clinical = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
preview = preview_df(selected_clinical, n=5, max_items=200)
# Optionally observe the preview (not printing to avoid extra text, but you could if needed)
selected_clinical.to_csv(out_clinical_data_file, index=False)
# STEP3
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
gene_data = get_genetic_data(matrix_file)
# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
print(gene_data.index[:20])
# Based on the observed identifiers, some (like "A2BP1", "7A5") appear to be old or non-standard.
# Hence, they likely need to be mapped to official gene symbols.
requires_gene_mapping = True
# STEP5
# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
gene_annotation = get_gene_annotation(soft_file)
# 2. Use the 'preview_df' function from the library to preview the data and print out the results.
print("Gene annotation preview:")
print(preview_df(gene_annotation))
# STEP: Gene Identifier Mapping
# 1) Identify columns in `gene_annotation` corresponding to probe IDs and gene symbols.
# From the previous preview, "ID" in the gene annotation matches the expression data's IDs,
# and "ORF" appears to hold the same text which we'll treat as the gene symbol column.
# 2) Get the gene mapping dataframe.
mapping_df = get_gene_mapping(annotation=gene_annotation, prob_col='ID', gene_col='ORF')
# 3) Apply mapping to convert probe-level measurements to gene-level expression.
gene_data = apply_gene_mapping(expression_df=gene_data, mapping_df=mapping_df)
# (Optional) Print basic info to confirm successful mapping.
print("Mapped gene data shape:", gene_data.shape)
print("First 20 mapped gene symbols:", list(gene_data.index[:20]))
# STEP 7: Data Normalization and Linking
import pandas as pd
# 1. Normalize gene symbols in the obtained gene expression data
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
normalized_gene_data.to_csv(out_gene_data_file)
print(f"Saved normalized gene data to {out_gene_data_file}")
# Ensure "selected_clinical" is defined by reading from our previously saved CSV.
temp_df = pd.read_csv(out_clinical_data_file)
# Step 2 extracts trait, age, gender => we expect exactly 3 rows
if temp_df.shape[0] == 3:
temp_df.index = [trait, "Age", "Gender"]
selected_clinical = temp_df
# 2. Link the clinical and genetic data on sample IDs
linked_data = geo_link_clinical_genetic_data(selected_clinical, normalized_gene_data)
# 3. Handle missing values, removing or imputing as instructed
linked_data = handle_missing_values(linked_data, trait)
# 4. Determine whether the trait (and potentially other features) is severely biased.
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Conduct final quality validation and save metadata
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=trait_biased,
df=linked_data,
note="Cohort data successfully processed with trait-based analysis."
)
# 6. If the dataset is usable, save the final linked data
if is_usable:
linked_data.to_csv(out_data_file, index=True)
print(f"Saved final linked data to {out_data_file}")
else:
print("The dataset is not usable for trait-based association. Skipping final output.") |