File size: 6,559 Bytes
f426016
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Arrhythmia"
cohort = "GSE115574"

# Input paths
in_trait_dir = "../DATA/GEO/Arrhythmia"
in_cohort_dir = "../DATA/GEO/Arrhythmia/GSE115574"

# Output paths
out_data_file = "./output/preprocess/1/Arrhythmia/GSE115574.csv"
out_gene_data_file = "./output/preprocess/1/Arrhythmia/gene_data/GSE115574.csv"
out_clinical_data_file = "./output/preprocess/1/Arrhythmia/clinical_data/GSE115574.csv"
json_path = "./output/preprocess/1/Arrhythmia/cohort_info.json"

# STEP 1

from tools.preprocess import *

# 1. Identify the paths to the SOFT file and the matrix file
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# 2. Read the matrix file to obtain background information and sample characteristics data
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
background_info, clinical_data = get_background_and_clinical_data(
    matrix_file, 
    background_prefixes, 
    clinical_prefixes
)

# 3. Obtain the sample characteristics dictionary from the clinical dataframe
sample_characteristics_dict = get_unique_values_by_row(clinical_data)

# 4. Explicitly print out all the background information and the sample characteristics dictionary
print("Background Information:")
print(background_info)
print("\nSample Characteristics Dictionary:")
print(sample_characteristics_dict)
# Step 1: Determine if gene expression data is available
is_gene_available = True  # Based on the background info (Affymetrix human gene expression microarrays)

# Step 2: Identify data availability and define conversion functions

# After reviewing the sample characteristics dictionary:
# {0: ['disease state: atrial fibrillation patient with severe mitral regurgitation',
#      'disease state: sinus rhythm patient with severe mitral regurgitation'],
#  1: ['tissue: left atrium  - heart',
#      'tissue: right atrium  - heart']}

# The "trait" 'Arrhythmia' can be inferred from row 0, which distinguishes AFib vs. sinus rhythm.
trait_row = 0

# Age and gender data are not apparent in the dictionary, so set them to None.
age_row = None
gender_row = None

def convert_trait(value):
    """
    Convert the disease state string to a binary indicator for arrhythmia (AFib).
    Return 1 if the string indicates atrial fibrillation, 0 if sinus rhythm, else None.
    """
    try:
        after_colon = value.split(':', 1)[1].strip().lower()
    except IndexError:
        return None

    if 'atrial fibrillation' in after_colon:
        return 1
    elif 'sinus rhythm' in after_colon:
        return 0
    return None

def convert_age(value):
    """
    Age data is not available in this dataset. Return None.
    """
    return None

def convert_gender(value):
    """
    Gender data is not available in this dataset. Return None.
    """
    return None

# Step 3: Conduct initial filtering and save metadata
is_trait_available = (trait_row is not None)
is_usable = validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=is_trait_available
)

# Step 4: If trait data is available, extract clinical features and save
if trait_row is not None:
    selected_clinical_df = geo_select_clinical_features(
        clinical_df=clinical_data,
        trait=trait,
        trait_row=trait_row,
        convert_trait=convert_trait,
        age_row=age_row,
        convert_age=convert_age,
        gender_row=gender_row,
        convert_gender=convert_gender
    )
    preview_result = preview_df(selected_clinical_df, n=5)
    selected_clinical_df.to_csv(out_clinical_data_file, index=False)
# STEP3
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
gene_data = get_genetic_data(matrix_file)

# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
print(gene_data.index[:20])
# These identifiers (e.g., '1007_s_at', '1053_at') are Affymetrix probe IDs, not standard gene symbols.
# Therefore, mapping to gene symbols is required.

requires_gene_mapping = True
# STEP5
# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
gene_annotation = get_gene_annotation(soft_file)

# 2. Use the 'preview_df' function from the library to preview the data and print out the results.
print("Gene annotation preview:")
print(preview_df(gene_annotation))
# Gene Identifier Mapping

# 1. Identify the columns in 'gene_annotation' that match the probe IDs in 'gene_data' and the gene symbols.
#    From the preview, the probe ID is stored in column "ID", and gene symbols are stored in "Gene Symbol".

# 2. Extract the gene mapping dataframe.
mapping_df = get_gene_mapping(gene_annotation, prob_col="ID", gene_col="Gene Symbol")

# 3. Convert probe-level measurements to gene expression data.
gene_data = apply_gene_mapping(gene_data, mapping_df)

# For verification, let's print the new gene_data shape and a sample of its row indices.
print("Mapped gene_data shape:", gene_data.shape)
print("Sample gene symbols:", list(gene_data.index[:10]))
# STEP 7: Data Normalization and Linking

# 1. Normalize gene symbols in the obtained gene expression data
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
normalized_gene_data.to_csv(out_gene_data_file)
print(f"Saved normalized gene data to {out_gene_data_file}")

# 2. Link the clinical and genetic data on sample IDs
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)

# 3. Handle missing values in the linked data
linked_data = handle_missing_values(linked_data, trait_col=trait)

# 4. Determine whether the trait/demographic features are severely biased
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait=trait)

# 5. Conduct final quality validation and save metadata
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=True,
    is_trait_available=True,
    is_biased=trait_biased,
    df=linked_data,
    note="Trait data and gene data successfully linked."
)

# 6. If the dataset is deemed usable, save the final linked data as a CSV file
if is_usable:
    linked_data.to_csv(out_data_file)
    print(f"Saved final linked data to {out_data_file}")
else:
    print("Dataset was not deemed usable; final linked data not saved.")