File size: 6,208 Bytes
f426016 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Arrhythmia"
cohort = "GSE47727"
# Input paths
in_trait_dir = "../DATA/GEO/Arrhythmia"
in_cohort_dir = "../DATA/GEO/Arrhythmia/GSE47727"
# Output paths
out_data_file = "./output/preprocess/1/Arrhythmia/GSE47727.csv"
out_gene_data_file = "./output/preprocess/1/Arrhythmia/gene_data/GSE47727.csv"
out_clinical_data_file = "./output/preprocess/1/Arrhythmia/clinical_data/GSE47727.csv"
json_path = "./output/preprocess/1/Arrhythmia/cohort_info.json"
# STEP 1
from tools.preprocess import *
# 1. Identify the paths to the SOFT file and the matrix file
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# 2. Read the matrix file to obtain background information and sample characteristics data
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
background_info, clinical_data = get_background_and_clinical_data(
matrix_file,
background_prefixes,
clinical_prefixes
)
# 3. Obtain the sample characteristics dictionary from the clinical dataframe
sample_characteristics_dict = get_unique_values_by_row(clinical_data)
# 4. Explicitly print out all the background information and the sample characteristics dictionary
print("Background Information:")
print(background_info)
print("\nSample Characteristics Dictionary:")
print(sample_characteristics_dict)
# 1. Gene Expression Data Availability
is_gene_available = True # The platform is Illumina HumanHT-12, indicating gene expression data.
# 2. Variable Availability and Data Type Conversion
# Based on the sample characteristics:
# 0 -> "age (yrs): X"
# 1 -> "gender: male"/"gender: female"
# 2 -> "tissue: blood"
#
# There's no indication (key) that provides Arrhythmia status; all subjects are "control participants."
# Thus, the trait is NOT available in this dataset.
trait_row = None
age_row = 0
gender_row = 1
# Data type conversion functions
def convert_trait(x: str):
"""
For demonstration, we define the conversion but this dataset
has no trait data. We return None to indicate unavailability.
"""
return None
def convert_age(x: str):
"""
Extract the numeric age after 'age (yrs):' and convert to float.
If there is any parsing error, return None.
"""
# Typically, these entries look like "age (yrs): 67"
# We split by ':' and strip.
try:
val = x.split(':')[-1].strip()
return float(val)
except:
return None
def convert_gender(x: str):
"""
Convert 'gender: female' -> 0 and 'gender: male' -> 1.
If other strings appear, return None.
"""
try:
val = x.split(':')[-1].strip().lower()
if val == 'male':
return 1
elif val == 'female':
return 0
except:
pass
return None
# 3. Save Metadata
# Perform initial filtering (is_final=False). Since trait_row is None,
# trait data is NOT available.
is_trait_available = False
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available
)
# 4. Clinical Feature Extraction
# Since trait_row is None, we skip extracting clinical features.
# STEP3
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
gene_data = get_genetic_data(matrix_file)
# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
print(gene_data.index[:20])
# The gene identifiers (e.g., "ILMN_1343291") are Illumina probe IDs, not standard human gene symbols.
# Thus, they require mapping to gene symbols.
print("requires_gene_mapping = True")
# STEP5
# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
gene_annotation = get_gene_annotation(soft_file)
# 2. Use the 'preview_df' function from the library to preview the data and print out the results.
print("Gene annotation preview:")
print(preview_df(gene_annotation))
# STEP: Gene Identifier Mapping
# 1. We identify that in the gene_annotation DataFrame:
# - The "ID" column matches the Illumina probe IDs (e.g., "ILMN_1343291") found in gene_data.index.
# - The "Symbol" column holds gene symbol information for mapping.
# 2. Get a gene mapping DataFrame from gene_annotation by selecting the 'ID' column as the probe identifier
# and the 'Symbol' column as the gene symbol.
mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Symbol')
# 3. Convert probe-level measurements in gene_data to gene-level measurements
# by applying the gene mapping, handling probes with multiple gene mappings.
gene_data = apply_gene_mapping(gene_data, mapping_df)
# STEP 7: Data Normalization and Linking
import pandas as pd
# 1. Normalize gene symbols in the obtained gene expression data
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
normalized_gene_data.to_csv(out_gene_data_file)
print(f"Saved normalized gene data to {out_gene_data_file}")
# Since trait_row is None (trait is not available), we cannot link clinical data or perform trait-based analysis.
# We'll skip linking and bias evaluation of the trait.
# We'll still perform the final validation to record that this cohort lacks trait data.
placeholder_df = pd.DataFrame() # Empty placeholder
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=False, # trait not available
is_biased=False, # No trait → can't evaluate trait bias, set to False to proceed
df=placeholder_df, # Required argument, though empty
note="No trait data available in the cohort."
)
# If the dataset is usable (unlikely since trait is missing), we would save final linked data.
if is_usable:
# Normally we would have a "linked_data" DataFrame to save;
# however, there's no trait, so no final data is produced.
pass
else:
print("Trait not available; skipping final data linkage and output.") |