File size: 6,208 Bytes
f426016
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Arrhythmia"
cohort = "GSE47727"

# Input paths
in_trait_dir = "../DATA/GEO/Arrhythmia"
in_cohort_dir = "../DATA/GEO/Arrhythmia/GSE47727"

# Output paths
out_data_file = "./output/preprocess/1/Arrhythmia/GSE47727.csv"
out_gene_data_file = "./output/preprocess/1/Arrhythmia/gene_data/GSE47727.csv"
out_clinical_data_file = "./output/preprocess/1/Arrhythmia/clinical_data/GSE47727.csv"
json_path = "./output/preprocess/1/Arrhythmia/cohort_info.json"

# STEP 1

from tools.preprocess import *

# 1. Identify the paths to the SOFT file and the matrix file
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# 2. Read the matrix file to obtain background information and sample characteristics data
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
background_info, clinical_data = get_background_and_clinical_data(
    matrix_file, 
    background_prefixes, 
    clinical_prefixes
)

# 3. Obtain the sample characteristics dictionary from the clinical dataframe
sample_characteristics_dict = get_unique_values_by_row(clinical_data)

# 4. Explicitly print out all the background information and the sample characteristics dictionary
print("Background Information:")
print(background_info)
print("\nSample Characteristics Dictionary:")
print(sample_characteristics_dict)
# 1. Gene Expression Data Availability
is_gene_available = True  # The platform is Illumina HumanHT-12, indicating gene expression data.

# 2. Variable Availability and Data Type Conversion

# Based on the sample characteristics:
#   0 -> "age (yrs): X"
#   1 -> "gender: male"/"gender: female"
#   2 -> "tissue: blood"
#
# There's no indication (key) that provides Arrhythmia status; all subjects are "control participants."
# Thus, the trait is NOT available in this dataset.
trait_row = None
age_row = 0
gender_row = 1

# Data type conversion functions
def convert_trait(x: str):
    """
    For demonstration, we define the conversion but this dataset
    has no trait data. We return None to indicate unavailability.
    """
    return None

def convert_age(x: str):
    """
    Extract the numeric age after 'age (yrs):' and convert to float.
    If there is any parsing error, return None.
    """
    # Typically, these entries look like "age (yrs): 67"
    # We split by ':' and strip.
    try:
        val = x.split(':')[-1].strip()
        return float(val)
    except:
        return None

def convert_gender(x: str):
    """
    Convert 'gender: female' -> 0 and 'gender: male' -> 1.
    If other strings appear, return None.
    """
    try:
        val = x.split(':')[-1].strip().lower()
        if val == 'male':
            return 1
        elif val == 'female':
            return 0
    except:
        pass
    return None

# 3. Save Metadata
# Perform initial filtering (is_final=False). Since trait_row is None,
# trait data is NOT available.
is_trait_available = False

validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=is_trait_available
)

# 4. Clinical Feature Extraction
# Since trait_row is None, we skip extracting clinical features.
# STEP3
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
gene_data = get_genetic_data(matrix_file)

# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
print(gene_data.index[:20])
# The gene identifiers (e.g., "ILMN_1343291") are Illumina probe IDs, not standard human gene symbols.
# Thus, they require mapping to gene symbols.

print("requires_gene_mapping = True")
# STEP5
# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
gene_annotation = get_gene_annotation(soft_file)

# 2. Use the 'preview_df' function from the library to preview the data and print out the results.
print("Gene annotation preview:")
print(preview_df(gene_annotation))
# STEP: Gene Identifier Mapping

# 1. We identify that in the gene_annotation DataFrame:
#    - The "ID" column matches the Illumina probe IDs (e.g., "ILMN_1343291") found in gene_data.index.
#    - The "Symbol" column holds gene symbol information for mapping.

# 2. Get a gene mapping DataFrame from gene_annotation by selecting the 'ID' column as the probe identifier
#    and the 'Symbol' column as the gene symbol.
mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Symbol')

# 3. Convert probe-level measurements in gene_data to gene-level measurements
#    by applying the gene mapping, handling probes with multiple gene mappings.
gene_data = apply_gene_mapping(gene_data, mapping_df)
# STEP 7: Data Normalization and Linking

import pandas as pd

# 1. Normalize gene symbols in the obtained gene expression data
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
normalized_gene_data.to_csv(out_gene_data_file)
print(f"Saved normalized gene data to {out_gene_data_file}")

# Since trait_row is None (trait is not available), we cannot link clinical data or perform trait-based analysis.
# We'll skip linking and bias evaluation of the trait.

# We'll still perform the final validation to record that this cohort lacks trait data.
placeholder_df = pd.DataFrame()  # Empty placeholder
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=True,
    is_trait_available=False,  # trait not available
    is_biased=False,           # No trait → can't evaluate trait bias, set to False to proceed
    df=placeholder_df,         # Required argument, though empty
    note="No trait data available in the cohort."
)

# If the dataset is usable (unlikely since trait is missing), we would save final linked data. 
if is_usable:
    # Normally we would have a "linked_data" DataFrame to save; 
    # however, there's no trait, so no final data is produced.
    pass
else:
    print("Trait not available; skipping final data linkage and output.")