File size: 6,417 Bytes
f426016
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Arrhythmia"
cohort = "GSE53622"

# Input paths
in_trait_dir = "../DATA/GEO/Arrhythmia"
in_cohort_dir = "../DATA/GEO/Arrhythmia/GSE53622"

# Output paths
out_data_file = "./output/preprocess/1/Arrhythmia/GSE53622.csv"
out_gene_data_file = "./output/preprocess/1/Arrhythmia/gene_data/GSE53622.csv"
out_clinical_data_file = "./output/preprocess/1/Arrhythmia/clinical_data/GSE53622.csv"
json_path = "./output/preprocess/1/Arrhythmia/cohort_info.json"

# STEP 1

from tools.preprocess import *

# 1. Identify the paths to the SOFT file and the matrix file
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# 2. Read the matrix file to obtain background information and sample characteristics data
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
background_info, clinical_data = get_background_and_clinical_data(
    matrix_file, 
    background_prefixes, 
    clinical_prefixes
)

# 3. Obtain the sample characteristics dictionary from the clinical dataframe
sample_characteristics_dict = get_unique_values_by_row(clinical_data)

# 4. Explicitly print out all the background information and the sample characteristics dictionary
print("Background Information:")
print(background_info)
print("\nSample Characteristics Dictionary:")
print(sample_characteristics_dict)
# 1) Determine if gene expression data is available
is_gene_available = True  # This is an lncRNA microarray study, so we consider it to have gene expression

# 2) Identify data availability and create conversion functions

# The sample characteristics dictionary shows:
# trait appears in row 10 with values "arrhythmia: no" or "arrhythmia: yes"
trait_row = 10

# age appears in row 1 with multiple numeric values
age_row = 1

# gender appears in row 2 with values "Sex: female" or "Sex: male"
gender_row = 2

def convert_trait(raw_value: str):
    """
    Convert arrhythmia values ('yes'/'no') to binary (1/0).
    """
    value = raw_value.split(':')[-1].strip().lower()
    if value == 'yes':
        return 1
    elif value == 'no':
        return 0
    return None

def convert_age(raw_value: str):
    """
    Convert age values to float. If conversion fails, returns None.
    """
    value = raw_value.split(':')[-1].strip()
    try:
        return float(value)
    except:
        return None

def convert_gender(raw_value: str):
    """
    Convert gender values ('male'/'female') to binary (1/0).
    """
    value = raw_value.split(':')[-1].strip().lower()
    if value == 'male':
        return 1
    elif value == 'female':
        return 0
    return None

# 3) Save metadata using initial filtering
is_trait_available = (trait_row is not None)
validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=is_trait_available
)

# 4) Extract clinical features if trait data is available
if trait_row is not None:
    selected_clinical_features = geo_select_clinical_features(
        clinical_df=clinical_data,
        trait=trait,
        trait_row=trait_row,
        convert_trait=convert_trait,
        age_row=age_row,
        convert_age=convert_age,
        gender_row=gender_row,
        convert_gender=convert_gender
    )

    # Preview and save extracted clinical data
    preview_result = preview_df(selected_clinical_features, n=5)
    print("Preview of Selected Clinical Data:", preview_result)
    selected_clinical_features.to_csv(out_clinical_data_file, index=False)
# STEP3
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
gene_data = get_genetic_data(matrix_file)

# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
print(gene_data.index[:20])
# Based on the numeric format of the identifiers, they do not appear to match standard human gene symbols.
# Therefore, gene mapping is needed.
print("requires_gene_mapping = True")
# STEP5
# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
gene_annotation = get_gene_annotation(soft_file)

# 2. Use the 'preview_df' function from the library to preview the data and print out the results.
print("Gene annotation preview:")
print(preview_df(gene_annotation))
# STEP 6: Gene Identifier Mapping

# 1. From observation, the 'ID' column in 'gene_annotation' matches the gene expression data 'ID'.
#    The 'SPOT_ID' column holds the gene symbols (though they look unusual, we assume they contain relevant symbol info).
mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='SPOT_ID')

# 2. Convert probe-level measurements to gene-level expression data using the mapping.
gene_data = apply_gene_mapping(gene_data, mapping_df)
# STEP 7: Data Normalization and Linking

# 1. Normalize gene symbols in the obtained gene expression data
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
normalized_gene_data.to_csv(out_gene_data_file)
print(f"Saved normalized gene data to {out_gene_data_file}")

# 2. We refer to the clinical data variable from step 2 as 'selected_clinical_features'
selected_clinical = selected_clinical_features

# 3. Link the clinical and genetic data on sample IDs
linked_data = geo_link_clinical_genetic_data(selected_clinical, normalized_gene_data)

# 4. Handle missing values, removing or imputing as instructed
linked_data = handle_missing_values(linked_data, trait)

# 5. Determine whether the trait (and potentially other features) is severely biased.
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

# 6. Conduct final quality validation and save metadata
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=True,
    is_trait_available=True,
    is_biased=trait_biased,
    df=linked_data,
    note="Cohort data successfully processed with trait-based analysis."
)

# 7. If the dataset is usable, save the final linked data
if is_usable:
    linked_data.to_csv(out_data_file, index=True)
    print(f"Saved final linked data to {out_data_file}")
else:
    print("The dataset is not usable for trait-based association. Skipping final output.")