File size: 6,417 Bytes
f426016 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Arrhythmia"
cohort = "GSE53622"
# Input paths
in_trait_dir = "../DATA/GEO/Arrhythmia"
in_cohort_dir = "../DATA/GEO/Arrhythmia/GSE53622"
# Output paths
out_data_file = "./output/preprocess/1/Arrhythmia/GSE53622.csv"
out_gene_data_file = "./output/preprocess/1/Arrhythmia/gene_data/GSE53622.csv"
out_clinical_data_file = "./output/preprocess/1/Arrhythmia/clinical_data/GSE53622.csv"
json_path = "./output/preprocess/1/Arrhythmia/cohort_info.json"
# STEP 1
from tools.preprocess import *
# 1. Identify the paths to the SOFT file and the matrix file
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# 2. Read the matrix file to obtain background information and sample characteristics data
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
background_info, clinical_data = get_background_and_clinical_data(
matrix_file,
background_prefixes,
clinical_prefixes
)
# 3. Obtain the sample characteristics dictionary from the clinical dataframe
sample_characteristics_dict = get_unique_values_by_row(clinical_data)
# 4. Explicitly print out all the background information and the sample characteristics dictionary
print("Background Information:")
print(background_info)
print("\nSample Characteristics Dictionary:")
print(sample_characteristics_dict)
# 1) Determine if gene expression data is available
is_gene_available = True # This is an lncRNA microarray study, so we consider it to have gene expression
# 2) Identify data availability and create conversion functions
# The sample characteristics dictionary shows:
# trait appears in row 10 with values "arrhythmia: no" or "arrhythmia: yes"
trait_row = 10
# age appears in row 1 with multiple numeric values
age_row = 1
# gender appears in row 2 with values "Sex: female" or "Sex: male"
gender_row = 2
def convert_trait(raw_value: str):
"""
Convert arrhythmia values ('yes'/'no') to binary (1/0).
"""
value = raw_value.split(':')[-1].strip().lower()
if value == 'yes':
return 1
elif value == 'no':
return 0
return None
def convert_age(raw_value: str):
"""
Convert age values to float. If conversion fails, returns None.
"""
value = raw_value.split(':')[-1].strip()
try:
return float(value)
except:
return None
def convert_gender(raw_value: str):
"""
Convert gender values ('male'/'female') to binary (1/0).
"""
value = raw_value.split(':')[-1].strip().lower()
if value == 'male':
return 1
elif value == 'female':
return 0
return None
# 3) Save metadata using initial filtering
is_trait_available = (trait_row is not None)
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available
)
# 4) Extract clinical features if trait data is available
if trait_row is not None:
selected_clinical_features = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview and save extracted clinical data
preview_result = preview_df(selected_clinical_features, n=5)
print("Preview of Selected Clinical Data:", preview_result)
selected_clinical_features.to_csv(out_clinical_data_file, index=False)
# STEP3
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
gene_data = get_genetic_data(matrix_file)
# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
print(gene_data.index[:20])
# Based on the numeric format of the identifiers, they do not appear to match standard human gene symbols.
# Therefore, gene mapping is needed.
print("requires_gene_mapping = True")
# STEP5
# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
gene_annotation = get_gene_annotation(soft_file)
# 2. Use the 'preview_df' function from the library to preview the data and print out the results.
print("Gene annotation preview:")
print(preview_df(gene_annotation))
# STEP 6: Gene Identifier Mapping
# 1. From observation, the 'ID' column in 'gene_annotation' matches the gene expression data 'ID'.
# The 'SPOT_ID' column holds the gene symbols (though they look unusual, we assume they contain relevant symbol info).
mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='SPOT_ID')
# 2. Convert probe-level measurements to gene-level expression data using the mapping.
gene_data = apply_gene_mapping(gene_data, mapping_df)
# STEP 7: Data Normalization and Linking
# 1. Normalize gene symbols in the obtained gene expression data
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
normalized_gene_data.to_csv(out_gene_data_file)
print(f"Saved normalized gene data to {out_gene_data_file}")
# 2. We refer to the clinical data variable from step 2 as 'selected_clinical_features'
selected_clinical = selected_clinical_features
# 3. Link the clinical and genetic data on sample IDs
linked_data = geo_link_clinical_genetic_data(selected_clinical, normalized_gene_data)
# 4. Handle missing values, removing or imputing as instructed
linked_data = handle_missing_values(linked_data, trait)
# 5. Determine whether the trait (and potentially other features) is severely biased.
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 6. Conduct final quality validation and save metadata
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=trait_biased,
df=linked_data,
note="Cohort data successfully processed with trait-based analysis."
)
# 7. If the dataset is usable, save the final linked data
if is_usable:
linked_data.to_csv(out_data_file, index=True)
print(f"Saved final linked data to {out_data_file}")
else:
print("The dataset is not usable for trait-based association. Skipping final output.") |