File size: 5,683 Bytes
5c59ea7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Atherosclerosis"
cohort = "GSE83500"

# Input paths
in_trait_dir = "../DATA/GEO/Atherosclerosis"
in_cohort_dir = "../DATA/GEO/Atherosclerosis/GSE83500"

# Output paths
out_data_file = "./output/preprocess/1/Atherosclerosis/GSE83500.csv"
out_gene_data_file = "./output/preprocess/1/Atherosclerosis/gene_data/GSE83500.csv"
out_clinical_data_file = "./output/preprocess/1/Atherosclerosis/clinical_data/GSE83500.csv"
json_path = "./output/preprocess/1/Atherosclerosis/cohort_info.json"

# STEP 1: Initial Data Loading

# 1. Identify the paths to the SOFT file and the matrix file
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# 2. Read the matrix file to obtain background information and sample characteristics data
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
background_info, clinical_data = get_background_and_clinical_data(
    matrix_file,
    prefixes_a=background_prefixes,
    prefixes_b=clinical_prefixes
)

# 3. Obtain the sample characteristics dictionary from the clinical dataframe
sample_characteristics_dict = get_unique_values_by_row(clinical_data)

# 4. Explicitly print out all the background information and the sample characteristics dictionary
print("Background Information:")
print(background_info)
print("\nSample Characteristics Dictionary:")
print(sample_characteristics_dict)
# 1. Gene Expression Data Availability
is_gene_available = True  # Based on the microarray-based gene expression mention

# 2.1 Variable Availability
#    The entire cohort has atherosclerosis, so it does not vary => trait_row = None
trait_row = None
age_row = 1   # "age: ..."
gender_row = 2  # "Sex: ..."

# 2.2 Data Type Conversions
def convert_trait(value: str):
    # No trait variation in this dataset => return None
    return None

def convert_age(value: str):
    # Example: "age: 69"
    parts = value.split(":")
    if len(parts) < 2:
        return None
    age_str = parts[1].strip()
    try:
        return float(age_str)
    except ValueError:
        return None

def convert_gender(value: str):
    # Example: "Sex: Male" or "Sex: Female"
    parts = value.split(":")
    if len(parts) < 2:
        return None
    gender_str = parts[1].strip().lower()
    if gender_str == 'male':
        return 1
    elif gender_str == 'female':
        return 0
    return None

# 3. Save Metadata (initial filtering)
is_trait_available = (trait_row is not None)
validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=is_trait_available
)

# 4. Clinical Feature Extraction
#    Skip because trait_row is None (trait not available)
# STEP3
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
gene_data = get_genetic_data(matrix_file)

# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
print(gene_data.index[:20])
# The provided gene identifiers (e.g., '11715100_at') are Affymetrix probe IDs, not human gene symbols.
# Therefore, they require mapping to gene symbols.

print("requires_gene_mapping = True")
# STEP5
# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
gene_annotation = get_gene_annotation(soft_file)

# 2. Use the 'preview_df' function from the library to preview the data and print out the results.
print("Gene annotation preview:")
print(preview_df(gene_annotation))
# STEP: Gene Identifier Mapping

# 1. Identify the columns for probe IDs and gene symbols in the annotation dataframe.
#    From the preview, the "ID" column matches the probe identifiers in gene_data,
#    and "Gene Symbol" column contains the actual gene symbols.

# 2. Get the gene mapping dataframe using these columns
mapping_df = get_gene_mapping(gene_annotation, prob_col="ID", gene_col="Gene Symbol")

# 3. Convert probe-level data into gene-level data using the mapping
gene_data = apply_gene_mapping(gene_data, mapping_df)

# For verification, print out the shape and first few gene symbols
print("Gene data shape after mapping:", gene_data.shape)
print("First 20 gene symbols in the mapped data:", list(gene_data.index[:20]))
# STEP 7

# Since trait data is unavailable (trait_row = None), we do NOT have any clinical data to link.
# We'll only normalize the gene data, then finalize validation indicating no trait data.

# 1. Normalize the gene expression data to standard gene symbols.
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
normalized_gene_data.to_csv(out_gene_data_file)
print("Normalized gene expression data saved to:", out_gene_data_file)

# 2. Skip linking and missing value handling because we have no clinical data for trait-based analysis.

# 3. For final validation, we must provide a DataFrame and an is_biased flag. Since there's no trait,
#    we set is_trait_available=False, and use an empty DataFrame with is_biased=False.
empty_df = pd.DataFrame()

is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=True,
    is_trait_available=False,
    is_biased=False,  # Arbitrarily False; trait is missing anyway.
    df=empty_df,
    note="No trait data available; dataset cannot be used for trait-based analysis."
)

if is_usable:
    print("Unexpectedly marked usable despite missing trait data.")
else:
    print("Dataset is not usable due to missing trait data. No final data saved.")