File size: 5,683 Bytes
5c59ea7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Atherosclerosis"
cohort = "GSE83500"
# Input paths
in_trait_dir = "../DATA/GEO/Atherosclerosis"
in_cohort_dir = "../DATA/GEO/Atherosclerosis/GSE83500"
# Output paths
out_data_file = "./output/preprocess/1/Atherosclerosis/GSE83500.csv"
out_gene_data_file = "./output/preprocess/1/Atherosclerosis/gene_data/GSE83500.csv"
out_clinical_data_file = "./output/preprocess/1/Atherosclerosis/clinical_data/GSE83500.csv"
json_path = "./output/preprocess/1/Atherosclerosis/cohort_info.json"
# STEP 1: Initial Data Loading
# 1. Identify the paths to the SOFT file and the matrix file
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# 2. Read the matrix file to obtain background information and sample characteristics data
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
background_info, clinical_data = get_background_and_clinical_data(
matrix_file,
prefixes_a=background_prefixes,
prefixes_b=clinical_prefixes
)
# 3. Obtain the sample characteristics dictionary from the clinical dataframe
sample_characteristics_dict = get_unique_values_by_row(clinical_data)
# 4. Explicitly print out all the background information and the sample characteristics dictionary
print("Background Information:")
print(background_info)
print("\nSample Characteristics Dictionary:")
print(sample_characteristics_dict)
# 1. Gene Expression Data Availability
is_gene_available = True # Based on the microarray-based gene expression mention
# 2.1 Variable Availability
# The entire cohort has atherosclerosis, so it does not vary => trait_row = None
trait_row = None
age_row = 1 # "age: ..."
gender_row = 2 # "Sex: ..."
# 2.2 Data Type Conversions
def convert_trait(value: str):
# No trait variation in this dataset => return None
return None
def convert_age(value: str):
# Example: "age: 69"
parts = value.split(":")
if len(parts) < 2:
return None
age_str = parts[1].strip()
try:
return float(age_str)
except ValueError:
return None
def convert_gender(value: str):
# Example: "Sex: Male" or "Sex: Female"
parts = value.split(":")
if len(parts) < 2:
return None
gender_str = parts[1].strip().lower()
if gender_str == 'male':
return 1
elif gender_str == 'female':
return 0
return None
# 3. Save Metadata (initial filtering)
is_trait_available = (trait_row is not None)
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available
)
# 4. Clinical Feature Extraction
# Skip because trait_row is None (trait not available)
# STEP3
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
gene_data = get_genetic_data(matrix_file)
# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
print(gene_data.index[:20])
# The provided gene identifiers (e.g., '11715100_at') are Affymetrix probe IDs, not human gene symbols.
# Therefore, they require mapping to gene symbols.
print("requires_gene_mapping = True")
# STEP5
# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
gene_annotation = get_gene_annotation(soft_file)
# 2. Use the 'preview_df' function from the library to preview the data and print out the results.
print("Gene annotation preview:")
print(preview_df(gene_annotation))
# STEP: Gene Identifier Mapping
# 1. Identify the columns for probe IDs and gene symbols in the annotation dataframe.
# From the preview, the "ID" column matches the probe identifiers in gene_data,
# and "Gene Symbol" column contains the actual gene symbols.
# 2. Get the gene mapping dataframe using these columns
mapping_df = get_gene_mapping(gene_annotation, prob_col="ID", gene_col="Gene Symbol")
# 3. Convert probe-level data into gene-level data using the mapping
gene_data = apply_gene_mapping(gene_data, mapping_df)
# For verification, print out the shape and first few gene symbols
print("Gene data shape after mapping:", gene_data.shape)
print("First 20 gene symbols in the mapped data:", list(gene_data.index[:20]))
# STEP 7
# Since trait data is unavailable (trait_row = None), we do NOT have any clinical data to link.
# We'll only normalize the gene data, then finalize validation indicating no trait data.
# 1. Normalize the gene expression data to standard gene symbols.
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
normalized_gene_data.to_csv(out_gene_data_file)
print("Normalized gene expression data saved to:", out_gene_data_file)
# 2. Skip linking and missing value handling because we have no clinical data for trait-based analysis.
# 3. For final validation, we must provide a DataFrame and an is_biased flag. Since there's no trait,
# we set is_trait_available=False, and use an empty DataFrame with is_biased=False.
empty_df = pd.DataFrame()
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=False,
is_biased=False, # Arbitrarily False; trait is missing anyway.
df=empty_df,
note="No trait data available; dataset cannot be used for trait-based analysis."
)
if is_usable:
print("Unexpectedly marked usable despite missing trait data.")
else:
print("Dataset is not usable due to missing trait data. No final data saved.") |