File size: 6,713 Bytes
5c59ea7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Atherosclerosis"
cohort = "GSE87005"
# Input paths
in_trait_dir = "../DATA/GEO/Atherosclerosis"
in_cohort_dir = "../DATA/GEO/Atherosclerosis/GSE87005"
# Output paths
out_data_file = "./output/preprocess/1/Atherosclerosis/GSE87005.csv"
out_gene_data_file = "./output/preprocess/1/Atherosclerosis/gene_data/GSE87005.csv"
out_clinical_data_file = "./output/preprocess/1/Atherosclerosis/clinical_data/GSE87005.csv"
json_path = "./output/preprocess/1/Atherosclerosis/cohort_info.json"
# STEP 1: Initial Data Loading
# 1. Identify the paths to the SOFT file and the matrix file
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# 2. Read the matrix file to obtain background information and sample characteristics data
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
background_info, clinical_data = get_background_and_clinical_data(
matrix_file,
prefixes_a=background_prefixes,
prefixes_b=clinical_prefixes
)
# 3. Obtain the sample characteristics dictionary from the clinical dataframe
sample_characteristics_dict = get_unique_values_by_row(clinical_data)
# 4. Explicitly print out all the background information and the sample characteristics dictionary
print("Background Information:")
print(background_info)
print("\nSample Characteristics Dictionary:")
print(sample_characteristics_dict)
# 1. Gene Expression Data Availability
is_gene_available = True # Based on the transcriptomic profiling info
# 2. Variable Availability
trait_row = None # No column found that corresponds to "Atherosclerosis"
age_row = None # No column found for age
gender_row = None # No column found for gender
# 2.2 Data Type Conversion Functions
def convert_trait(value: str) -> Optional[float]:
parts = value.split(':', 1)
val = parts[-1].strip() if len(parts) > 1 else value.strip()
return None # No valid trait data; returning None for all inputs
def convert_age(value: str) -> Optional[float]:
parts = value.split(':', 1)
val = parts[-1].strip() if len(parts) > 1 else value.strip()
return None # No valid age data; returning None for all inputs
def convert_gender(value: str) -> Optional[int]:
parts = value.split(':', 1)
val = parts[-1].strip().lower() if len(parts) > 1 else value.strip().lower()
return None # No valid gender data; returning None for all inputs
# 3. Save Metadata (initial filtering)
is_trait_available = (trait_row is not None)
is_usable = validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available
)
# 4. Clinical Feature Extraction
# Skip this step because trait_row is None (trait data not available)
# STEP3
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
gene_data = get_genetic_data(matrix_file)
# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
print(gene_data.index[:20])
# The gene identifiers appear to be microarray probe IDs rather than standard human gene symbols.
print("These appear to be microarray probe IDs that require mapping to gene symbols.")
print("requires_gene_mapping = True")
# STEP5
# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
gene_annotation = get_gene_annotation(soft_file)
# 2. Use the 'preview_df' function from the library to preview the data and print out the results.
print("Gene annotation preview:")
print(preview_df(gene_annotation))
# STEP 6: Gene Identifier Mapping
# 1) From the annotation preview, we see the same kind of IDs are stored in column "ID",
# and the gene symbols are in column "GENE_SYMBOL".
# 2) Get the mapping dataframe.
mapping_df = get_gene_mapping(
annotation=gene_annotation,
prob_col='ID',
gene_col='GENE_SYMBOL'
)
# 3) Convert probe-level measurements to gene-level data.
gene_data = apply_gene_mapping(gene_data, mapping_df)
# STEP 7
import pandas as pd
import os
# 1. Normalize the gene expression data to standard gene symbols.
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
normalized_gene_data.to_csv(out_gene_data_file)
print("Normalized gene expression data saved to:", out_gene_data_file)
# Check if the clinical file actually exists
if not os.path.exists(out_clinical_data_file):
# Trait data was not available, so no clinical file was ever written
print("Clinical data file not found; trait data not available.")
# Perform final validation indicating the trait is missing, and provide is_biased=False
# plus an empty DataFrame to fulfill the function signature for final validation.
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=False,
is_biased=False, # Must be a boolean, even though trait isn't available
df=pd.DataFrame(), # Provide an empty DataFrame to finalize
note="No trait data available to finish pipeline."
)
if not is_usable:
print("No final data saved.")
else:
print("Data unexpectedly marked usable despite no trait data.")
else:
# 2. Read the clinical data file and link with genetic data
selected_clinical_df = pd.read_csv(out_clinical_data_file, header=0)
# If there's only one row, label its index with the trait name
if len(selected_clinical_df) == 1:
selected_clinical_df.index = [trait]
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)
# 3. Handle missing values
df = handle_missing_values(linked_data, trait)
# 4. Determine whether the trait or demographic features are biased; remove biased demographic features.
trait_biased, df = judge_and_remove_biased_features(df, trait)
# 5. Perform final validation with full dataset
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=trait_biased,
df=df,
note="Final step with linking, missing-value handling, bias checks."
)
# 6. If data is usable, save the final linked data.
if is_usable:
df.to_csv(out_data_file)
print(f"Final linked data saved to: {out_data_file}")
else:
print("Dataset is not usable or severely biased. No final data saved.") |