File size: 6,028 Bytes
5c59ea7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Atherosclerosis"
cohort = "GSE90074"

# Input paths
in_trait_dir = "../DATA/GEO/Atherosclerosis"
in_cohort_dir = "../DATA/GEO/Atherosclerosis/GSE90074"

# Output paths
out_data_file = "./output/preprocess/1/Atherosclerosis/GSE90074.csv"
out_gene_data_file = "./output/preprocess/1/Atherosclerosis/gene_data/GSE90074.csv"
out_clinical_data_file = "./output/preprocess/1/Atherosclerosis/clinical_data/GSE90074.csv"
json_path = "./output/preprocess/1/Atherosclerosis/cohort_info.json"

# STEP 1: Initial Data Loading

# 1. Identify the paths to the SOFT file and the matrix file
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# 2. Read the matrix file to obtain background information and sample characteristics data
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
background_info, clinical_data = get_background_and_clinical_data(
    matrix_file,
    prefixes_a=background_prefixes,
    prefixes_b=clinical_prefixes
)

# 3. Obtain the sample characteristics dictionary from the clinical dataframe
sample_characteristics_dict = get_unique_values_by_row(clinical_data)

# 4. Explicitly print out all the background information and the sample characteristics dictionary
print("Background Information:")
print(background_info)
print("\nSample Characteristics Dictionary:")
print(sample_characteristics_dict)
# 1. Gene Expression Data Availability
is_gene_available = True

# 2.1 Data Availability
trait_row = None
age_row = None
gender_row = None

# 2.2 Data Type Conversions
def convert_trait(value: str):
    if not value:
        return None
    val = value.split(":", 1)[-1].strip().lower()
    # Example conversion logic:
    if "atherosclerosis" in val:
        return 1
    elif "control" in val:
        return 0
    return None

def convert_age(value: str):
    if not value:
        return None
    val = value.split(":", 1)[-1].strip()
    try:
        return float(val)
    except ValueError:
        return None

def convert_gender(value: str):
    if not value:
        return None
    val = value.split(":", 1)[-1].strip().lower()
    if val == "male":
        return 1
    elif val == "female":
        return 0
    return None

# 3. Save Metadata
is_trait_available = (trait_row is not None)
is_usable = validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=is_trait_available
)

# 4. Clinical Feature Extraction
# Skip this step because trait_row is None
# STEP3
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
gene_data = get_genetic_data(matrix_file)

# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
print(gene_data.index[:20])
print("requires_gene_mapping = True")
# STEP5
# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
gene_annotation = get_gene_annotation(soft_file)

# 2. Use the 'preview_df' function from the library to preview the data and print out the results.
print("Gene annotation preview:")
print(preview_df(gene_annotation))
# STEP: Gene Identifier Mapping

# 1. Based on the preview of gene_annotation and the row IDs in gene_data, 
#    we identify 'ID' as the probe identifier column and 'GENE_SYMBOL' as the gene symbol column.

# 2. Obtain gene mapping from the annotation dataframe.
mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='GENE_SYMBOL')

# 3. Convert probe-level expression to gene-level expression.
gene_data = apply_gene_mapping(gene_data, mapping_df)

# (Optional) Print a summary of the resulting gene_data for verification
print("Resulting gene_data shape:", gene_data.shape)
print("Resulting gene_data head:\n", gene_data.head())
import os
import pandas as pd

# STEP 7

# 1. Normalize the gene expression data to standard gene symbols.
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
normalized_gene_data.to_csv(out_gene_data_file)
print("Normalized gene expression data saved to:", out_gene_data_file)

# Check whether we actually have a clinical data file (which implies trait data was extracted).
if os.path.exists(out_clinical_data_file):
    # 2. Link the clinical and genetic data on sample IDs.
    selected_clinical_df = pd.read_csv(out_clinical_data_file, header=0, index_col=0)
    linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)

    # 3. Handle missing values in the linked data.
    df = handle_missing_values(linked_data, trait)

    # 4. Determine whether the trait or demographic features are biased; remove biased demographic features.
    trait_biased, df = judge_and_remove_biased_features(df, trait)

    # 5. Perform final validation with full dataset information.
    is_usable = validate_and_save_cohort_info(
        is_final=True,
        cohort=cohort,
        info_path=json_path,
        is_gene_available=True,
        is_trait_available=True,
        is_biased=trait_biased,
        df=df,
        note="Final step with linking, missing-value handling, and bias checks."
    )

    # 6. If the data is usable, save the final linked data.
    if is_usable:
        df.to_csv(out_data_file)
        print(f"Final linked data saved to: {out_data_file}")
    else:
        print("Dataset is not usable or is severely biased. No final data saved.")

else:
    # Trait data was never extracted, so record it as unavailable with is_final=False
    is_usable = validate_and_save_cohort_info(
        is_final=False,
        cohort=cohort,
        info_path=json_path,
        is_gene_available=True,
        is_trait_available=False,
        note="No clinical data available; trait data missing."
    )
    print("No clinical data file found. Skipping linking and final data save.")