File size: 6,028 Bytes
5c59ea7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Atherosclerosis"
cohort = "GSE90074"
# Input paths
in_trait_dir = "../DATA/GEO/Atherosclerosis"
in_cohort_dir = "../DATA/GEO/Atherosclerosis/GSE90074"
# Output paths
out_data_file = "./output/preprocess/1/Atherosclerosis/GSE90074.csv"
out_gene_data_file = "./output/preprocess/1/Atherosclerosis/gene_data/GSE90074.csv"
out_clinical_data_file = "./output/preprocess/1/Atherosclerosis/clinical_data/GSE90074.csv"
json_path = "./output/preprocess/1/Atherosclerosis/cohort_info.json"
# STEP 1: Initial Data Loading
# 1. Identify the paths to the SOFT file and the matrix file
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# 2. Read the matrix file to obtain background information and sample characteristics data
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
background_info, clinical_data = get_background_and_clinical_data(
matrix_file,
prefixes_a=background_prefixes,
prefixes_b=clinical_prefixes
)
# 3. Obtain the sample characteristics dictionary from the clinical dataframe
sample_characteristics_dict = get_unique_values_by_row(clinical_data)
# 4. Explicitly print out all the background information and the sample characteristics dictionary
print("Background Information:")
print(background_info)
print("\nSample Characteristics Dictionary:")
print(sample_characteristics_dict)
# 1. Gene Expression Data Availability
is_gene_available = True
# 2.1 Data Availability
trait_row = None
age_row = None
gender_row = None
# 2.2 Data Type Conversions
def convert_trait(value: str):
if not value:
return None
val = value.split(":", 1)[-1].strip().lower()
# Example conversion logic:
if "atherosclerosis" in val:
return 1
elif "control" in val:
return 0
return None
def convert_age(value: str):
if not value:
return None
val = value.split(":", 1)[-1].strip()
try:
return float(val)
except ValueError:
return None
def convert_gender(value: str):
if not value:
return None
val = value.split(":", 1)[-1].strip().lower()
if val == "male":
return 1
elif val == "female":
return 0
return None
# 3. Save Metadata
is_trait_available = (trait_row is not None)
is_usable = validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available
)
# 4. Clinical Feature Extraction
# Skip this step because trait_row is None
# STEP3
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
gene_data = get_genetic_data(matrix_file)
# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
print(gene_data.index[:20])
print("requires_gene_mapping = True")
# STEP5
# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
gene_annotation = get_gene_annotation(soft_file)
# 2. Use the 'preview_df' function from the library to preview the data and print out the results.
print("Gene annotation preview:")
print(preview_df(gene_annotation))
# STEP: Gene Identifier Mapping
# 1. Based on the preview of gene_annotation and the row IDs in gene_data,
# we identify 'ID' as the probe identifier column and 'GENE_SYMBOL' as the gene symbol column.
# 2. Obtain gene mapping from the annotation dataframe.
mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='GENE_SYMBOL')
# 3. Convert probe-level expression to gene-level expression.
gene_data = apply_gene_mapping(gene_data, mapping_df)
# (Optional) Print a summary of the resulting gene_data for verification
print("Resulting gene_data shape:", gene_data.shape)
print("Resulting gene_data head:\n", gene_data.head())
import os
import pandas as pd
# STEP 7
# 1. Normalize the gene expression data to standard gene symbols.
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
normalized_gene_data.to_csv(out_gene_data_file)
print("Normalized gene expression data saved to:", out_gene_data_file)
# Check whether we actually have a clinical data file (which implies trait data was extracted).
if os.path.exists(out_clinical_data_file):
# 2. Link the clinical and genetic data on sample IDs.
selected_clinical_df = pd.read_csv(out_clinical_data_file, header=0, index_col=0)
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)
# 3. Handle missing values in the linked data.
df = handle_missing_values(linked_data, trait)
# 4. Determine whether the trait or demographic features are biased; remove biased demographic features.
trait_biased, df = judge_and_remove_biased_features(df, trait)
# 5. Perform final validation with full dataset information.
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=trait_biased,
df=df,
note="Final step with linking, missing-value handling, and bias checks."
)
# 6. If the data is usable, save the final linked data.
if is_usable:
df.to_csv(out_data_file)
print(f"Final linked data saved to: {out_data_file}")
else:
print("Dataset is not usable or is severely biased. No final data saved.")
else:
# Trait data was never extracted, so record it as unavailable with is_final=False
is_usable = validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=False,
note="No clinical data available; trait data missing."
)
print("No clinical data file found. Skipping linking and final data save.") |