File size: 3,199 Bytes
3088323 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Breast_Cancer"
cohort = "GSE249377"
# Input paths
in_trait_dir = "../DATA/GEO/Breast_Cancer"
in_cohort_dir = "../DATA/GEO/Breast_Cancer/GSE249377"
# Output paths
out_data_file = "./output/preprocess/1/Breast_Cancer/GSE249377.csv"
out_gene_data_file = "./output/preprocess/1/Breast_Cancer/gene_data/GSE249377.csv"
out_clinical_data_file = "./output/preprocess/1/Breast_Cancer/clinical_data/GSE249377.csv"
json_path = "./output/preprocess/1/Breast_Cancer/cohort_info.json"
# STEP1
from tools.preprocess import *
# 1. Identify the paths to the SOFT file and the matrix file
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# 2. Read the matrix file to obtain background information and sample characteristics data
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
# 3. Obtain the sample characteristics dictionary from the clinical dataframe
sample_characteristics_dict = get_unique_values_by_row(clinical_data)
# 4. Explicitly print out all the background information and the sample characteristics dictionary
print("Background Information:")
print(background_info)
print("Sample Characteristics Dictionary:")
print(sample_characteristics_dict)
# 1. Gene Expression Data Availability
is_gene_available = True # From background info, this dataset provides transcriptomic (gene expression) data.
# 2. Variable Availability and Data Type Conversion
# After reviewing the sample characteristics, none of the rows provide distinct "Breast_Cancer" statuses,
# nor do they provide "age" or "gender" information. The experiment uses only MCF7 (a breast cancer cell line),
# which does not vary among samples in a way that is useful for association studies.
trait_row = None
age_row = None
gender_row = None
# Define conversion functions (they won't be used here, but we must still define them):
def convert_trait(value: str) -> Optional[Union[float, int]]:
return None # No trait row available, so always return None
def convert_age(value: str) -> Optional[float]:
return None # No age row available, so always return None
def convert_gender(value: str) -> Optional[int]:
return None # No gender row available, so always return None
# 3. Save Metadata (initial filtering)
# If trait_row is None, is_trait_available should be False
is_usable = validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=(trait_row is not None)
)
# 4. Clinical Feature Extraction
# Since trait_row is None, we do not perform clinical feature extraction and skip this step.
# STEP3
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
gene_data = get_genetic_data(matrix_file)
# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
print(gene_data.index[:20]) |